首页> 外文期刊>Journal of circuits, systems and computers >A Novel Salp Swarm Optimization MPP Tracking Algorithm for the Solar Photovoltaic Systems under Partial Shading Conditions
【24h】

A Novel Salp Swarm Optimization MPP Tracking Algorithm for the Solar Photovoltaic Systems under Partial Shading Conditions

机译:局部遮阳条件下太阳能光伏系统的一种新型SALP群优化MPP跟踪算法

获取原文
获取原文并翻译 | 示例

摘要

To extract the maximum solar power from the photovoltaic (PV) panel/array with the high conversion efficiency under partial shading condition (PSC), this paper discusses a new and an efficient maximum power point (MPP) tracking algorithm. The proposed algorithm is based on the bio-inspired salp swarm optimization (SSO), and the algorithm forecasts the global MPP (GMPP) with the fast convergence to GMPP and high tracking efficiency. The SSO algorithm thus reduces the computational burden as encountered in whale optimization algorithm (WOA), and gray wolf optimization (GWO) algorithm discussed in the various literatures. The modeling and simulation of the proposed SSO algorithm are done with the help of Matlab/ Simulink software to validate the effectiveness to locate the MPP during PSCs. The simulation results prove that the proposed SSO algorithm exhibits a high PV power output with the tracking efficiency of more than 95% at the faster convergence rate to GMPP. The SSO algorithm is experimentally verified on the conventional boost converter under different shading conditions.
机译:为了在局部遮阳条件(PSC)下具有高转换效率的光伏(PV)面板/阵列的最大太阳能电力,本文讨论了一种新的和有效的最大功率点(MPP)跟踪算法。所提出的算法基于生物启发SALP群优化(SSO),算法预测全球MPP(GMPP)与GMPP的快速收敛性和高跟踪效率。因此,SSO算法减少了各种文献中讨论的鲸瓦优化算法(WOA)和灰狼优化(GWO)算法的计算负担。借助Matlab / Simulink软件的帮助,完成了所提出的SSO算法的建模和仿真,以验证PSC期间定位MPP的有效性。仿真结果证明,所提出的SSO算法表现出高光伏电源输出,跟踪效率超过95%,更快地收敛速度至GMPP。在不同的阴影条件下,在传统的升压转换器上实验验证SSO算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号