首页> 外文期刊>Journal of circuits, systems and computers >ANFIS Controller-Based Cascaded Nonisolated Bidirectional DC-DC Converter
【24h】

ANFIS Controller-Based Cascaded Nonisolated Bidirectional DC-DC Converter

机译:基于ANFIS控制器的级联非隔离双向DC-DC转换器

获取原文
获取原文并翻译 | 示例

摘要

The development of bidirectional DC-DC converters has become important because of their requirement in energy-storage systems. The simple structure of nonisolated bidirectional DC-DC converter types includes multilevel, switched-capacitor, buck-boost, and coupled inductor type. In multilevel and switched-capacitor types, if large voltage gain must be provided, more switches and capacitors are required. Since the leakage inductor energy cannot be recycled, voltage stresses on the switches are present. Therefore, the control strategy is easily implemented in the system operation. This paper presents a cascaded nonisolated dc-dc switched coupled converter for enhancement of the switching operation. For the optimal switching performances, an Artificial Intelligence (AI) technique is utilized. The AI technique is the Adaptive Neuro-Fuzzy Inference System (ANFIS) for generating the optimal control pulses to enhance the performance of boost and buck switch. In addition, the proposed technique is utilized in cascaded nonisolated DC-DC switched coupled converter to reduce the losses. In the ANFIS technique, the error voltage and change in error voltage are given as inputs. At the same time, the ANFIS controller is employed to reduce the error value and produce the optimized gain pulses. In the buck and boost switch mode of operation, it is enhanced with the help of the proposed technique. Moreover, the operating principle and voltage conversion ratio are discussed. It is seen that the implementation of the proposed controller improves the efficiency of the system and also reduces the voltage drop across the switching operation. Then the proposed ANFIS technique with bidirectional converter topology was implemented in MATLAB/Simulink working platform and the output performance is analyzed. Then the proposed circuit performance is compared to the existing circuit such as proportional integral derivative (PID), artificial neural network (ANN) and Fuzzy, respectively.
机译:双向DC-DC转换器的发展已经变得很重要,因为它们在储能系统中的需求。非隔离双向DC-DC转换器类型的简单结构包括多电平,开关电容器,降压-升压和耦合电感器类型。在多级和开关电容器类型中,如果必须提供大的电压增益,则需要更多的开关和电容器。由于泄漏的电感器能量无法回收,因此会在开关上产生电压应力。因此,在系统操作中容易实现控制策略。本文提出了一种级联非隔离式DC-DC开关耦合转换器,用于增强开关操作。为了获得最佳的开关性能,采用了人工智能(AI)技术。 AI技术是自适应神经模糊推理系统(ANFIS),用于生成最佳控制脉冲以增强升压和降压开关的性能。另外,所提出的技术被用于级联的非隔离式DC-DC开关耦合转换器中以减少损耗。在ANFIS技术中,误差电压和误差电压的变化作为输入给出。同时,使用ANFIS控制器减小误差值并产生优化的增益脉冲。在降压和升压开关操作模式下,借助所提出的技术可以增强此功能。此外,讨论了工作原理和电压转换率。可以看出,所提出的控制器的实施提高了系统的效率,并且还降低了开关操作中的电压降。然后在MATLAB / Simulink工作平台上实现了所提出的具有双向转换器拓扑结构的ANFIS技术,并分析了输出性能。然后将拟议的电路性能与现有电路(例如比例积分微分(PID),人工神经网络(ANN)和模糊电路)进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号