首页> 外文期刊>Journal of Circuits, Systems, and Computers >Reconfigurable FPGA/GPU-Based Architecture of Block Compressive Sampling Matching Pursuit Algorithm
【24h】

Reconfigurable FPGA/GPU-Based Architecture of Block Compressive Sampling Matching Pursuit Algorithm

机译:基于可重构FPGA / GPU的块压缩采样匹配追踪算法架构

获取原文
获取原文并翻译 | 示例

摘要

The signals in reality are sparse signal where a few numbers of samples are non-zero. So, a compression technique must be applied to reduce the overhead of processing, storing, and transmission. Blocking compressive sampling matching pursuit (BCoSaMP) algorithm is a recursive algorithm which provides an accurate reconstruction of sparse signal from a small number of noisy samples. It doesn't assume that the noise is Gaussian or bounded but it uses information about the noise magnitude for stopping criterion. However, BCoSaMP is a computationally intensive algorithm. So, BCoSaMP algorithm has been implemented on both field-programmable gate array (FPGA) and graphic processing units (GPU) by exploiting parallel and pipelining approaches. A new software tool called radar signal processing tool (RSPT) is also presented. It allows the designer to auto-generate fully optimized VHDL representation of BCoSaMP by specifying many user input parameters through graphical user interface (GUI). Moreover, it provides the designer a feedback on various performance parameters. This offer the designer the ability to make any adjustments to the BCoSaMP component until gets the desired performance of the overall system-on-chip (SoC). Our simulation results indicate that the achieved speed-up of FPGA and GPU over the sequential one is improved by up to 14 and 10.7, respectively.
机译:实际上,信号是稀疏信号,其中一些样本为非零。因此,必须采用压缩技术以减少处理,存储和传输的开销。分组压缩采样匹配追踪(BCoSaMP)算法是一种递归算法,可从少量噪声样本中准确重建稀疏信号。它不假设噪声是高斯噪声或有界噪声,但是它使用有关噪声幅度的信息作为停止标准。但是,BCoSaMP是一种计算密集型算法。因此,通过利用并行和流水线方法,已经在现场可编程门阵列(FPGA)和图形处理单元(GPU)上实现了BCoSaMP算法。还介绍了一种称为雷达信号处理工具(RSPT)的新软件工具。它允许设计人员通过通过图形用户界面(GUI)指定许多用户输入参数来自动生成BCoSaMP的完全优化的VHDL表示形式。此外,它为设计人员提供了有关各种性能参数的反馈。这使设计人员能够对BCoSaMP组件进行任何调整,直到获得整体片上系统(SoC)所需的性能。我们的仿真结果表明,FPGA和GPU在顺序处理器上实现的加速分别提高了14和10.7。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号