首页> 外文期刊>Journal of Bioinformatics and Computational Biology >INFERRING THE REGULATORY INTERACTION MODELS OF TRANSCRIPTION FACTORS IN TRANSCRIPTIONAL REGULATORY NETWORKS
【24h】

INFERRING THE REGULATORY INTERACTION MODELS OF TRANSCRIPTION FACTORS IN TRANSCRIPTIONAL REGULATORY NETWORKS

机译:推论转录调控网络中转录因子的调控相互作用模型

获取原文
获取原文并翻译 | 示例

摘要

Living cells are realized by complex gene expression programs that are moderated by regulatorynproteins called transcription factors (TFs). The TFs control the di®erential expression of targetngenes in the context of transcriptional regulatory networks (TRNs), either individually or inngroups. Deciphering the mechanisms of how the TFs control the di®erential expression of antarget gene in a TRN is challenging, especially when multiple TFs collaboratively participate innthe transcriptional regulation. To unravel the roles of the TFs in the regulatory networks, wenmodel the underlying regulatory interactions in terms of the TFu0001target interactions' directionsn(activation or repression) and their corresponding logical roles (necessary and/or su±cient). Wendesign a set of constraints that relate gene expression patterns to regulatory interaction models,nand develop TRIM (Transcriptional Regulatory Interaction Model Inference), a new hiddennMarkov model, to infer the models of TFu0001target interactions in large-scale TRNs of complexnorganisms. Besides, by training TRIM with wild-type time-series gene expression data, thenactivation timepoints of each regulatory module can be obtained. To demonstrate the advantagesnof TRIM, we applied it on yeast TRN to infer the TFu0001target interaction models fornindividual TFs as well as pairs of TFs in collaborative regulatory modules. By comparing withnTF knockout and other gene expression data, we were able to show that the performance ofnTRIM is clearly higher than DREM (the best existing algorithm). In addition, on an individualnArabidopsis binding network, we showed that the target genes' expression correlations can bensigni¯cantly improved by incorporating the TFu0001target regulatory interaction models inferredn†† Corresponding author.nJournal of Bioinformatics and Computational BiologynVol. 10, No. 5 (2012) 1250012 (20 pages)n#.c Imperial College PressnDOI: 10.1142/S0219720012500126n1250012-1nby TRIM into the expression data analysis, which may introduce new knowledge in transcriptionalndynamics and bioactivation.
机译:活细胞通过复杂的基因表达程序实现,该程序由称为转录因子(TF)的调节蛋白调节。 TF在转录调节网络(TRN)的环境中(无论是个体还是个体)控制靶标基因的差异表达。破解TF如何控制TRN中靶基因差异表达的机制具有挑战性,特别是当多个TF共同参与转录调控时。要了解TF在监管网络中的作用,请根据TFu0001目标相互作用的方向n(激活或抑制)及其相应的逻辑角色(必要和/或充分)对潜在的监管相互作用进行建模。 Wen设计了一组将基因表达模式与调节相互作用模型相关联的约束条件,并开发了TRIM(转录调节相互作用模型推论)(一种新的隐马尔可夫模型)来推断复杂生物的大规模TRN中TFu0001目标相互作用的模型。此外,通过用野生型时序基因表达数据训练TRIM,可以获得每个调控模块的激活时间点。为了证明TRIM的优势,我们将其应用在酵母TRN上,以推断单个TF以及协同调节模块中的TF对的TFu0001目标相互作用模型。通过与nTF基因敲除和其他基因表达数据进行比较,我们能够证明nTRIM的性能明显高于DREM(现有的最佳算法)。此外,在单个拟南芥结合网络上,我们表明,通过引入推断的TFu0001靶标调控相互作用模型,可以显着改善靶基因的表达相关性。《生物信息学与计算生物学杂志》。 10,No.5(2012)1250012(20页)n#.c Imperial College PressnDOI:10.1142 / S0219720012500126n1250012-1n通过TRIM进行表达数据分析,这可能会在转录动力学和生物激活方面引入新的知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号