首页> 外文期刊>Journal of Automated Reasoning >Decidable E*A* First-Order Fragments of Linear Rational Arithmetic with Uninterpreted Predicates
【24h】

Decidable E*A* First-Order Fragments of Linear Rational Arithmetic with Uninterpreted Predicates

机译:可判定的e * a *一排线性Rational算术的一排碎片,与未解释的谓词

获取原文

摘要

First-order linear rational arithmetic enriched with uninterpreted predicates yields an interesting and very expressive modeling language. However, already the presence of a single uninterpreted predicate symbol of arity one or greater renders the associated satisfiability problem undecidable. We identify two decidable fragments, both based on the Bernays-Schonfinkel-Ramsey prefix class. Due to the inherent infiniteness of the underlying domain, a finite model property in the usual sense cannot be established. Nevertheless, we show that satisfiable sentences always have a model that can be described by finite means. To this end, we restrict the syntax of arithmetic atoms. In the first fragment that is presented, arithmetic operations are only allowed over terms without universally quantified variables. In the second fragment, arithmetic atoms are essentially confined to difference constraints over universally quantified variables with bounded range. We will call such atomsbounded difference constraints. As bounded intervals over the rationals still comprise infinitely many values, a trivial instantiation procedure is not sufficient to solve the satisfiability problem. After a slight shift of perspective, the positive decidability result for the first fragment can be restated in the framework of combinations of theories over non-disjoint vocabularies. More precisely, we combine first-order theories that share a dense total order without endpoints.
机译:富有未解释的谓词丰富的一阶线性Rational算法产生了一种有趣和非常表现的建模语言。然而,已经存在一个或更大的arity的单个未解释的谓词符号,呈现出相关的可满足问题。我们识别两个可解除的碎片,都基于伯尼 - Schonfinkel-Ramsey前缀类。由于底层域的固有缺点,通常无法建立通常意义的有限模型属性。尽管如此,我们表明满足句子始终具有可以通过有限手段描述的模型。为此,我们限制了算术原子的语法。在所呈现的第一片段中,仅在没有普遍定量变量的情况下允许的算术操作。在第二片段中,算术原子基本上被限制在具有界限范围的普遍定量变量上的差异约束。我们将调用此类atomsBounded差异约束。由于基于理性的界限间隔仍然包括多重值,但是琐碎的实例化程序不足以解决满足性问题。在略微偏移之后,第一片段的正脱穷可解性结果可以在非脱节词汇的理论组合框架中重新处理。更确切地说,我们将一阶理论结合起来,没有端点的浓密总量。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号