首页> 外文期刊>Journal of Automated Reasoning >An Intuitionistic Proof of a Discrete Form of the Jordan Curve Theorem Formalized in Coq with Combinatorial Hypermaps
【24h】

An Intuitionistic Proof of a Discrete Form of the Jordan Curve Theorem Formalized in Coq with Combinatorial Hypermaps

机译:组合超图在Coq中形式化的Jordan曲线定理离散形式的直觉证明

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a completely formalized proof of a discrete form of the Jordan Curve Theorem. It is based on a hypermap model of planar subdivisions, formal specifications and proofs assisted by the Coq system. Fundamental properties are proven by structural or noetherian induction: Genus Theorem, Euler Formula, constructive planarity criteria. A notion of ring of faces is inductively defined and a Jordan Curve Theorem is stated and proven for any planar hypermap.
机译:本文提出了约旦曲线定理离散形式的完全形式化证明。它基于平面细分的超图模型,形式规格和由Coq系统协助的证明。基本性质已通过结构归纳法或noetherian归纳法证明:类定理,欧拉公式,构造性平面度标准。归纳定义了面环的概念,并陈述了约旦曲线定理,并证明了其可用于任何平面超图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号