首页> 外文期刊>Journal of Automated Reasoning >Set Graphs. Ⅲ. Proof Pearl: Claw-Free Graphs Mirrored into Transitive Hereditarily Finite Sets
【24h】

Set Graphs. Ⅲ. Proof Pearl: Claw-Free Graphs Mirrored into Transitive Hereditarily Finite Sets

机译:设置图。 Ⅲ。证明明珠:无爪图形镜像到传递性遗传有限集

获取原文
获取原文并翻译 | 示例

摘要

We report on the formalization of two classical results about claw-free graphs, which have been verified correct by Jacob T. Schwartz's proof-checker Referee. We have proved formally that every connected claw-free graph admits (1) a near-perfect matching, (2) Hamiltonian cycles in its square. To take advantage of the set-theoretic foundation of Referee, we exploited set equivalents of the graph-theoretic notions involved in our experiment: edge, source, square, etc. To ease some proofs, we have often resorted to weak counterparts of well-established notions such as cycle, claw-freeness, longest directed path, etc.
机译:我们报告了关于无爪图的两个经典结果的形式化,该结果已由Jacob T. Schwartz的校对检查员裁判证实是正确的。我们已正式证明,每个连接的无爪图都承认(1)接近完美的匹配,(2)其平方中的哈密顿环。为了利用裁判员的集合论基础,我们利用了实验中涉及的图论概念的集合等价形式:边,源,正方形等。为简化证明,我们经常求助于弱论者。确定的概念,例如循环,无爪,最长的有向路径等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号