首页> 外文期刊>Journal of Automated Reasoning >Evidence Algorithm and Inference Search in First-Order Logics
【24h】

Evidence Algorithm and Inference Search in First-Order Logics

机译:一阶逻辑中的证据算法和推理搜索

获取原文
获取原文并翻译 | 示例

摘要

In the early 1970s, in Kiev, research on automated theorem proving started in the framework of the so-called Evidence Algorithm (EA) programme, having some general features with the Mizar project and, in particular, being oriented to the development of such a technique for inference search in various first-order logics that satisfies the following requirements: the syntactic form of a problem under consideration should be preserved, logical transformations should be performed in the signature of the original theory, equality handling should be separated from deduction. For these reasons, the main efforts of the EA developers were concentrated on modifying the sequent formalism to obtain sufficient efficiency in sequent proof search, although some attention was paid to the construction of resolution-type methods. This paper contains a brief summary of the author's results in this field. It is shown that the proposed approach enables to construct (sound and complete) quantifier-rule-free sequent calculi for classical and non-classical logics, including the intuitionistic and modal cases. Besides, two sound and complete resolution-type methods based on a certain generalization of the notion of a clause are described. One of them gives the possibility to interpret Maslov's inverse method in resolution terms.
机译:1970年代初期,在基辅,所谓定理算法(EA)程序的框架开始了对自动定理证明的研究,该程序在Mizar项目中具有一些一般特征,尤其是面向这种定理的发展。满足以下条件的各种一阶逻辑中的推理搜索技术:应保留所考虑问题的句法形式,应在原始理论的签名中进行逻辑转换,应将等式处理与推论分开。由于这些原因,EA开发人员的主要工作集中在修改顺序形式上,以在顺序证明搜索中获得足够的效率,尽管对分辨率类型方法的构建给予了一定的关注。本文包含作者在该领域的研究成果的简要摘要。结果表明,所提出的方法能够为经典和非经典逻辑(包括直觉和模态情况)构造(合理且完整的)无量词规则的后续计算。此外,还描述了两种基于子句概念某种概括性的健全且完整的解决方法。其中之一使人们有可能用分辨率来解释马斯洛夫的反演方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号