首页> 外文期刊>Journal of Automated Reasoning >Soundness and Completeness Proofs by Coinductive Methods
【24h】

Soundness and Completeness Proofs by Coinductive Methods

机译:归纳法的稳健性和完整性证明

获取原文
获取原文并翻译 | 示例

摘要

We show how codatatypes can be employed to produce compact, high-level proofs of key results in logic: the soundness and completeness of proof systems for variations of first-order logic. For the classical completeness result, we first establish an abstract property of possibly infinite derivation trees. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems for various flavors of first-order logic. Soundness becomes interesting as soon as one allows infinite proofs of first-order formulas. This forms the subject of several cyclic proof systems for first-order logic augmented with inductive predicate definitions studied in the literature. All the discussed results are formalized using Isabelle/HOL's recently introduced support for codatatypes and corecursion. The development illustrates some unique features of Isabelle/HOL's new coinductive specification language such as nesting through non-free types and mixed recursion-corecursion.
机译:我们展示了如何使用协数据类型来生成逻辑中关键结果的紧凑,高级证明:一阶逻辑变化的证明系统的健全性和完整性。对于经典的完整性结果,我们首先建立可能无限的衍生树的抽象属性。可以针对各种类型的一阶逻辑为各种Gentzen和tableau系统实例化抽象证明。只要人们能够无限证明一阶公式,那么稳健性就会变得很有趣。这形成了一些针对一阶逻辑的循环证明系统的主题,这些系统用文献中研究的归纳谓词定义进行了扩充。所有讨论的结果都使用Isabelle / HOL最近引入的对协同数据类型和corecursion的支持进行形式化。该开发说明了Isabelle / HOL的新共归规范语言的一些独特功能,例如通过非自由类型嵌套和混合递归-核心递归的嵌套。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号