首页> 外文期刊>Journal of Applied Physics >Ge interface engineering using ultra-thin La2O3 and Y2O3 films: A study into the effect of deposition temperature
【24h】

Ge interface engineering using ultra-thin La2O3 and Y2O3 films: A study into the effect of deposition temperature

机译:采用超薄La2O3和Y2O3薄膜的Ge界面工程:沉积温度影响的研究

获取原文
获取原文并翻译 | 示例
           

摘要

A study into the optimal deposition temperature for ultra-thin La2O3/Ge and Y2O3/Ge gate stacks has been conducted in this paper with the aim to tailor the interfacial layer for effective passivation of the Ge interface. A detailed comparison between the two lanthanide oxides (La2O3 and Y2O3) in terms of band line-up, interfacial features, and reactivity to Ge using medium energy ion scattering, vacuum ultra-violet variable angle spectroscopic ellipsometry (VUV-VASE), X-ray photoelectron spectroscopy, and X-ray diffraction is shown. La2O3 has been found to be more reactive to Ge than Y2O3, forming LaGeOx and a Ge sub-oxide at the interface for all deposition temperature studied, in the range from 44 °C to 400 °C. In contrast, Y2O3/Ge deposited at 400 °C allows for an ultra-thin GeO2 layer at the interface, which can be eliminated during annealing at temperatures higher than 525 °C leaving a pristine YGeOx/Ge interface. The Y2O3/Ge gate stack deposited at lower temperature shows a sub-band gap absorption feature fitted to an Urbach tail of energy 1.1 eV. The latter correlates to a sub-stoichiometric germanium oxide layer at the interface. The optical band gap for the Y2O3/Ge stacks has been estimated to be 5.7 ± 0.1 eV from Tauc-Lorentz modelling of VUV-VASE experimental data. For the optimal deposition temperature (400 °C), the Y2O3/Ge stack exhibits a higher conduction band offset (>2.3 eV) than the La2O3/Ge (∼2 eV), has a larger band gap (by about 0.3 eV), a germanium sub-oxide free interface, and leakage current (∼10−7 A/cm- at 1 V) five orders of magnitude lower than the respective La2O3/Ge stack. Our study strongly points to the superiority of the Y2O3/Ge system for germanium interface engineering to achieve high performance Ge Complementary Metal Oxide Semiconductor technology.
机译:本文针对超薄La2O3 / Ge和Y2O3 / Ge栅堆叠的最佳沉积温度进行了研究,旨在定制界面层以有效钝化Ge界面。两种镧系元素氧化物(La2O3和Y2O3)的能带排列,界面特征和与Ge的反应性的详细比较,方法是使用中能离子散射,真空紫外可变角光谱椭圆偏振光谱法(VUV-VASE),X-射线光电子能谱和X射线衍射图。已发现La2O3对Ge的反应性比Y2O3高,在研究的所有沉积温度范围(44°C至400°C)中,在界面处形成LaGeOx和Ge亚氧化物。相反,在400°C处沉积的Y2O3 / Ge允许在界面处形成超薄的GeO2层,在高于525°C的温度下进行退火时可以将其消除,从而保留原始的YGeOx / Ge界面。在较低温度下沉积的Y2O3 / Ge栅堆叠显示出一个子带隙吸收特征,该特征适合于能量为1.1 eV的Urbach尾巴。后者与界面处的亚化学计量的氧化锗层相关。根据VUV-VASE实验数据的Tauc-Lorentz建模,Y2O3 / Ge叠层的光学带隙估计为5.7±0.1 eV。对于最佳的沉积温度(400°C),Y2O3 / Ge叠层比La2O3 / Ge(〜2 eV)表现出更高的导带偏移(> 2.3 eV),带隙较大(约0.3 eV),不含锗的低氧化物界面,并且泄漏电流(在1 V时约为10 −7 A / cm -)比相应的La2O3 / Ge堆栈低五个数量级。我们的研究强烈指出Y2O3 / Ge系统在锗界面工程中的优势,以实现高性能的Ge互补金属氧化物半导体技术。

著录项

  • 来源
    《Journal of Applied Physics》 |2014年第11期|1-16|共16页
  • 作者

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号