...
首页> 外文期刊>Journal of Applied Physics >Impurity incorporation and diffusion from regrowth interfaces in N-polar GaN photocathodes and the impact on quantum efficiency
【24h】

Impurity incorporation and diffusion from regrowth interfaces in N-polar GaN photocathodes and the impact on quantum efficiency

机译:杂质掺入和扩散来自N极GaN光电处理的再生界面和对量子效率的影响

获取原文
获取原文并翻译 | 示例

摘要

We investigate the mechanisms of growth interruption mediated interfacial impurity diffusion in N-polar GaN, and through this understanding, we offer an approach toward achieving high quantum efficiency Ill-nitride photocathode devices. N-polar photocathode structures consisting of a p-GaN active layer and a thin unintentionally doped GaN (u-GaN) cap layer were grown on an N-polar u-GaN template with varied growth interruptions at interfaces. Unintentionally incorporated oxygen and silicon impurity spikes at regrowth interfaces were measured by secondary ion mass spectrometry. Pipe and bulk diffusion of the oxygen impurity is observed from the regrowth interfaces when the overgrown layer required higher temperature growth, whereas only bulk diffusion is seen otherwise. Furthermore, the proximity of regrowth interfaces to the surface is observed to impact the diffusivity of oxygen. Growth interruption between the p-GaN active layer and cap layer resulted in a low quantum efficiency of 0.27%, while uninterrupted growth of the p-GaN/ u-GaN cap photocathode achieved a quantum efficiency of 10.79%. We attribute the low quantum efficiency of the interrupted cap photocathode to the high density of oxygen within the active region of the device. Understanding of impurity incorporation at regrowth interfaces, dominating driving mechanisms behind diffusion of these species, and their impact on material properties are critical elements in designing high performing devices.
机译:我们研究了N极GaN中的生长中断介导的界面杂质扩散的机制,通过这种理解,我们提供了实现高量子效率不含氮化物光电阴极器件的方法。由P-GaN有源层和薄无意掺杂的GaN(U-GaN)盖层组成的N极光阴离子结构在N极U-GaN模板上生长,在接口处具有不同的生长中断。通过二次离子质谱法测量在再生界面处的无意掺入的氧气和硅杂质尖峰。当超长层所需的温度增长时,从再生界面观察到氧气杂质的管道和散装扩散,而另外,仅观察到批量扩散。此外,观察到对表面的再生界面接近影响氧的扩散性。 P-GaN有源层和帽层之间的生长中断导致低量子效率为0.27%,而P-GaN / U-GaN帽光电阴极的不间断生长达到10.79%的量子效率。我们将中断帽光电阴极的低量子效率归因于器件的有源区内的高密度氧气。对再生界面的杂质掺入的理解,占据这些物种的扩散后面的驱动机制,以及它们对材料特性的影响是设计高性能设备的关键元件。

著录项

  • 来源
    《Journal of Applied Physics 》 |2021年第19期| 195701.1-195701.7| 共7页
  • 作者单位

    College of Nanoscale Science and Engineering SUNY Polytechnic Institute Albany New York 12203 USA;

    College of Nanoscale Science and Engineering SUNY Polytechnic Institute Albany New York 12203 USA;

    College of Nanoscale Science and Engineering SUNY Polytechnic Institute Albany New York 12203 USA;

    College of Nanoscale Science and Engineering SUNY Polytechnic Institute Albany New York 12203 USA;

    College of Nanoscale Science and Engineering SUNY Polytechnic Institute Albany New York 12203 USA;

    Jet Propulsion Laboratory California Institute of Technology Pasadena California 91109 USA;

    College of Nanoscale Science and Engineering SUNY Polytechnic Institute Albany New York 12203 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号