...
首页> 外文期刊>Journal of Applied Physics >Hydrodynamic simulation of converging shock waves in porous conical samples enclosed within solid targets
【24h】

Hydrodynamic simulation of converging shock waves in porous conical samples enclosed within solid targets

机译:封闭在固体靶中的多孔锥形样品中会聚冲击波的流体动力学模拟

获取原文
获取原文并翻译 | 示例

摘要

Axially symmetric flows with converging shock waves in conical solid targets of steel or lead filled by porous aluminum, graphite, or polytetrafluoroethylene under impact of an aluminum plate with the velocity from 2.5 to 9 km/s have been simulated numerically in the framework of the model of the hypoelastic ideal-plastic solid. Equations of state for all materials in question are used to describe thermodynamic properties of the impactor and target over a wide range of pressures and temperatures, taking into account phase transitions. The graphite-to-diamond transformation is taken into consideration based on a kinetic model. Three different convergent cone configurations of the targets either with a closed cavity or with an outlet hole are analyzed. An appreciable increase of the pressure and temperature within the target cavity as well as of the ejected material velocity on decreasing the initial density of a sample is demonstrated in the simulations. Numerical results that can be compared with possible further experiments for verification of the predictions are presented and discussed.
机译:在模型的框架内,在速度为2.5至9 km / s的铝板的冲击下,模拟了由多孔铝,石墨或聚四氟乙烯填充的钢或铅的圆锥形固体靶中带有会聚冲击波的轴对称流动。次弹性理想塑性固体。考虑到相变,使用所有相关材料的状态方程来描述冲击器和靶材在很大压力和温度范围内的热力学性质。基于动力学模型考虑了石墨到金刚石的转变。分析了具有封闭空腔或带有出口孔的靶材的三种不同的收敛锥构型。在模拟中证明了在降低样品的初始密度时,靶腔内的压力和温度以及射出的材料速度会明显增加。提出并讨论了可以与可能的其他实验进行比较以验证预测的数值结果。

著录项

  • 来源
    《Journal of Applied Physics 》 |2011年第v110n5期| p.053501.1-053501.11| 共11页
  • 作者单位

    Institution of the Russian Academy of Sciences Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg2, Moscow 125412, Russia;

    Institution of the Russian Academy of Sciences Dorodnicyn Computing Center RAS, Vavilova 40, Moscow 119333, Russia;

    Institution of the Russian Academy of Sciences Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg2, Moscow 125412, Russia;

    Institution of the Russian Academy of Sciences Dorodnicyn Computing Center RAS, Vavilova 40, Moscow 119333, Russia;

    Institution of the Russian Academy of Sciences Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg2, Moscow 125412, Russia;

    Institution of the Russian Academy of Sciences Dorodnicyn Computing Center RAS, Vavilova 40, Moscow 119333, Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号