...
首页> 外文期刊>Journal of Applied Physics >Effective modeling of high-energy laboratory-based x-ray phase contrast imaging utilizing absorption masks or gratings
【24h】

Effective modeling of high-energy laboratory-based x-ray phase contrast imaging utilizing absorption masks or gratings

机译:利用吸收面罩或光栅的高能实验室X射线相位对比度成像的有效建模

获取原文
获取原文并翻译 | 示例
           

摘要

Model refinements for the edge illumination x-ray phase contrast imaging method have been developed to improve simulation accuracy for high energy, polychromatic beams. High-energy x rays are desirable in imaging due to their penetrative power and, for biological samples, their lower dose deposition rate. Accurate models of such scenarios are required for designing appropriate imaging systems and to predict signal strength in complex settings such as clinical imaging or industrial quality assurance. When using optical components appropriate for high-energy x rays in a non-synchrotron setting, system performance was observed to deviate from that predicted by existing models. In this work, experimental data utilizing increasing thicknesses of a known filter material are used to illustrate the limitations of existing models and as validation for the new modeling features. Angular filtration of the cone beam was observed to be the most significant effect; however, specific features of the source and detector are also shown to affect system performance. We conclude by showing that a significantly improved agreement between experimental and simulated data is obtained with the refined model compared to previously existing ones.
机译:已经开发了边缘照明X射线相位对比度成像方法的模型改进,以提高高能量,多色梁的模拟精度。由于它们的渗透功率,并且对于生物样品,其较低剂量沉积速率,高能X射线是理想的。设计适当的成像系统以及预测复杂设置中的信号强度所必需的准确模型,例如临床影像或工业质量保证。当使用适合于非同步rotron设置中的高能X射线的光学组件时,观察到系统性能偏离现有模型预测的系统性能。在这项工作中,利用已知滤波器材料的增加的厚度的实验数据用于说明现有模型的限制和对新建模特征的验证。观察到锥形光束的角滤膜是最显着的效果;但是,还显示了源和检测器的特定功能来影响系统性能。我们通过表明与先前存在的模型相比,通过精细模型获得了实验和模拟数据之间的显着改善的协议。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第21期|214503.1-214503.11|共11页
  • 作者单位

    Department of Medical Physics and Biomedical Engineering University College London Cower Street London WC1E 6BT United Kingdom;

    Department of Medical Physics and Biomedical Engineering University College London Cower Street London WC1E 6BT United Kingdom;

    MicroWorks GmbH Schnetzlerstrasse 9 76137 Karlsruhe Germany;

    MicroWorks GmbH Schnetzlerstrasse 9 76137 Karlsruhe Germany;

    Department of Medical Physics and Biomedical Engineering University College London Cower Street London WC1E 6BT United Kingdom;

    Department of Medical Physics and Biomedical Engineering University College London Cower Street London WC1E 6BT United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号