首页> 外文期刊>Journal of Applied Physics >An advanced physical model for the Coulombic scattering mobility in 4H-SiC inversion layers
【24h】

An advanced physical model for the Coulombic scattering mobility in 4H-SiC inversion layers

机译:4H-SIC反转层中的库仑散射迁移率的先进物理模型

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, a new model for the mobility due to Coulombic scattering by interface charges (juc) in 4H-SiC MOS structures, which is suitable for device study via finite element (FE)-based simulations, is proposed. Unlike popular expressions based on the classical Sah-Lombardi model which lead to major inconsistencies in μ_C's variation with the semiconductor depth z, the proposed model combines previous experimental data with established theoretical results on μ_C's depth dependence. The evolution of the components of the channel drift mobility (μ_(ch)) with z and the gate bias V_(gs) is then examined using this model by means of FE analysis. It is found that while μ_C is the dominant component at the surface, at larger depths μ_(ch) is determined by the mobility due to acoustic phonon scattering (μ_(SA)). Moreover, at low channel dopings (N_A) or temperatures above approximately 425 K, μ_(SA) replaces μ_C as the key limitation. Conversely, the roughness scattering mobility μ_(SR) becomes important only at very high V_(gs) and N_A.
机译:在这项工作中,提出了一种由界面电荷(JUC)在4H-SIC MOS结构中的Coulombic散射引起的移动性的新模型,其适用于通过有限元(Fe)的模拟的装置研究。与基于典型SAH-LOMBARDI模型的流行表达不同,导致μ_c与半导体深度z的变化主要不一致,所提出的模型将先前的实验数据与μ_c深度依赖的建立的理论结果相结合。然后通过FE分析使用该模型检查通道漂移迁移率(μ_(CH))的组件的进化和栅极偏压V_(GS)。发现,虽然μ_c是表面处的主导分量,但在较大的深度下,μ_(ch)由由于声学声子散射(μ_(sa))而确定的迁移率。此外,在低通道掺杂(N_A)或高于约425k的温度下,μ_(SA)将μ_c替换为关键限制。相反,粗糙度散射迁移率μ_(SR)仅在非常高的V_(GS)和N_A处变得重要。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第19期|194504.1-194504.13|共13页
  • 作者

    K. Naydenov; N. Donato; F. Udrea;

  • 作者单位

    Electrical Engineering Division University of Cambridge 9 JJ Thomson Ave. Cambridge CB3 0FA United Kingdom;

    Electrical Engineering Division University of Cambridge 9 JJ Thomson Ave. Cambridge CB3 0FA United Kingdom;

    Electrical Engineering Division University of Cambridge 9 JJ Thomson Ave. Cambridge CB3 0FA United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号