...
首页> 外文期刊>Journal of Applied Physics >Superconducting optoelectronic loop neurons
【24h】

Superconducting optoelectronic loop neurons

机译:超导光电环形神经元

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Superconducting optoelectronic hardware has been proposed for large-scale neural computing. In this work, we expand upon the circuit and network designs previously introduced. We investigate circuits using superconducting single-photon detectors and Josephson junctions to perform signal reception, synaptic weighting, and integration. Designs are presented for synapses and neurons that perform integration of rate-coded signals as well as detect coincidence events for temporal coding. A neuron with a single integration loop can receive input from thousands of synaptic connections, and many such loops can be employed for dendritic processing. We show that a synaptic weight can be modified via a superconducting flux-storage loop inductively coupled to the current bias of the synapse. Synapses with hundreds of stable states are designed. Spike-timing-dependent plasticity can be implemented using two photons to strengthen and two photons to weaken the synaptic weight via Hebbian-type learning rules. In addition to the synaptic receiver and plasticity circuits, we describe an amplifier chain that converts the current pulse generated when a neuron reaches threshold to a voltage pulse sufficient to produce light from a semiconductor diode. This light is the signal used to communicate between neurons in the network. We analyze the performance of the elements in the amplifier chain to calculate the energy consumption per photon created. The speed of the amplification sequence allows neuronal firing up to at least 20MHz, independent of connectivity. We consider these neurons in network configurations to investigate near-term technological potential and long-term physical limitations. By modeling the physical size of superconducting optoelectronic neurons, we calculate the area of these networks. A system with 8100 neurons and 330430 total synapses will fit on a 1x1 cm(2) die. Systems of millions of neurons with hundreds of millions of synapses will fit on a 300mm wafer. For multiwafer assemblies, communication at light speed enables a neuronal pool the size of a large data center (10(5) m(2)) comprised of trillions of neurons with coherent oscillations at 1MHz.
机译:已经提出了超导光电硬件,用于大规模神经计算。在这项工作中,我们扩展了先前介绍的电路和网络设计。我们使用超导单光子探测器和约瑟夫森结来研究电路,以执行信号接收,突触加权和集成。为突触和神经元提供设计,该突触和神经元执行速率编码信号的集成以及检测时间编码的巧合事件。具有单个集成环路的神经元可以接收数千个突触连接的输入,并且可以用于树枝状处理的许多这样的环。我们表明,可以通过电感地耦合到突触的当前偏置的超导磁通存储回路来修改突触重量。设计了数百个稳定状态的突触。可以使用两个光子来实现峰值定时依赖性可塑性,以通过Hebbian型学习规则加强两个光子来削弱突触重量。除了突触接收器和可塑性电路之外,我们描述了一种放大器链,该放大器链转换当神经元达到足以产生来自半导体二极管的光的电压脉冲的阈值时产生的电流脉冲。这种光是用于在网络中的神经元之间进行通信的信号。我们分析放大器链中元素的性能,以计算创建的每个光子的能量消耗。放大序列的速度允许神经元射击高达至少20MHz,与连接无关。我们认为这些神经元在网络配置中以研究近期技术潜力和长期的身体限制。通过对超导光电神经元的物理尺寸进行建模,我们计算这些网络的面积。具有8100神经元和330430个总突触的系统将适合1x1 cm(2)模具。数百万个神经元系统,其中数百百万个突触将适合300mm晶圆。对于多摆动组件,光速的通信使得神经元池能够大的数据中心(10(5)(2))的尺寸,其包括在1MHz处具有相干振荡的万亿神经元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号