首页> 外文期刊>Journal of Applied Physics >Decoupling thermal and electrical transport in α-MgAgSb with synergic pressure and doping strategy
【24h】

Decoupling thermal and electrical transport in α-MgAgSb with synergic pressure and doping strategy

机译:具有协同压力和掺杂策略的α-MGAGSB中的热和电气输送

获取原文
获取原文并翻译 | 示例

摘要

The Nowotny-Juza alpha-MgAgSb has been demonstrated to be a promising candidate for room-temperature thermoelectric material, owing to its ultralow lattice thermal conductivity. The challenge of enhancing its figure of merit (ZT) for commercial applications is how to effectively decouple the electrical and thermal transport with available experimental strategies. With a synergic pressure and doping strategy, we demonstrate from first principles that the bandgap of alpha-MgAgSb enlarges and its electrical and thermal transport can be decoupled. From the perspective of lattice dynamics, the locally vibrating three-centered Mg-Ag-Sb bonds generate multiple low-lying optical phonons which contribute large scattering channels among heat-carrying phonons and thus result in a strong anharmonicity. Under hydrostatic pressure from ambient to 50 GPa, the chemical bonds are strengthened and low-lying optical phonons move upward, which reduces the anharmonic three-phonon scattering events and thus increases lattice thermal conductivity. Under hydrostatic pressure, alpha-MgAgSb maintains high mechanical stability even at 550 K and 50 GPa, as verified by first-principles molecular dynamics simulations. By combining the pressure and the doping strategy to engineer density of states near the Fermi level, the thermoelectric power factor can be tuned to be significantly high while the thermal conductivity remains reasonably low. The physical insights gained from this work pave the way for decoupling electrical and thermal transport of alpha-MgAgSb via the synergic pressure and doping strategy toward improving its thermoelectric performance. Published under license by AIP Publishing.
机译:由于其超级晶格导热率,NowoTny-Juza alpha-Mgagsb已被证明是室温热电材料的有希望的候选者。增强其商业应用的优点(ZT)的挑战是如何用可用的实验策略有效地解耦电气和热传输。通过协同压力和掺杂策略,我们从第一个原则上证明了α-MgAgsb扩大的带隙及其电气和热运输可以脱钩。从晶格动力学的角度来看,局部振动的三中心MG-AG-SB键合产生多个低位光学声子,这些光学声子在热携带声子之间产生大的散射通道,从而导致强大的Anharmonicity。在环境温度的静水压力下,化学键加强,低位光学声音向上移动,从而降低了anharmonic三声子散射事件,从而提高了晶格导热率。在静水压力下,α-MgAgSB即使在550 k和50 gpa下也保持高机械稳定性,通过第一原理分子动力学模拟验证。通过将压力和掺杂策略结合到FERMI水平附近的状态的工程密度,可以调谐热电功率因数,以显着高,而导热率保持不良。从该工作中获得的物理洞察力铺平了通过协同压力和掺杂策略来解耦α-MgAgSB的电气和热传输,以提高其热电性能。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2019年第20期|205105.1-205105.7|共7页
  • 作者单位

    Shandong Univ Sch Energy & Power Engn Qingdao 266237 Shandong Peoples R China|Rhein Westfal TH Aachen Inst Mineral Engn Div Mat Sci & Engn D-52064 Aachen Germany;

    Shandong Univ Sch Energy & Power Engn Qingdao 266237 Shandong Peoples R China;

    Univ South Carolina Dept Mech Engn Columbia SC 29208 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号