...
首页> 外文期刊>Journal of Applied Physics >Excitation wavelength-dependent carrier dynamics in n-type and semi-insulating 6H-SiC using ultrafast transient absorption spectroscopy
【24h】

Excitation wavelength-dependent carrier dynamics in n-type and semi-insulating 6H-SiC using ultrafast transient absorption spectroscopy

机译:超快速瞬态吸收光谱法在n型和半绝缘6H-SiC中激发波长相关的载流子动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Transient absorption spectroscopy was utilized to monitor ultrafast carrier dynamics in conductive and semi-insulating 6H-SiC wafers. By tuning the excitation wavelength around the bandgap of 6H-SiC (365-400nm), the surface and bulk recombination processes could be accordingly distinguished. Simultaneously, the locations of surface and defect states in the bandgap were inferred by investigating the evolution of transient absorption spectra for different photoexcited carrier distributions. Vanadium (V) doping had a notable modulation on transient absorption in semi-insulating 6H-SiC, resulting from an additional decay process induced by carrier capturing of V deep levels. The carrier lifetimes induced by various recombination mechanisms were determined and interpreted unequivocally by global analysis and simplified model. The time constant via bulk capturing (approximate to 400ps) was three orders of magnitude faster than that via inherent defects. Controlling the lifetime by excitation wavelength and doping conditions is essential for fabricating 6H-SiC-based ultrafast photonic devices.%235703.1-235703.9
机译:瞬态吸收光谱用于监测导电和半绝缘6H-SiC晶片中的超快载流子动力学。通过调节6H-SiC(365-400nm)带隙附近的激发波长,可以区分表面和本体复合过程。同时,通过研究不同光激发载流子分布的瞬态吸收光谱的演化来推断带隙中表面和缺陷状态的位置。钒(V)掺杂对半绝缘6H-SiC中的瞬态吸收具有显着的调节作用,这是由于载流子捕获V深能级引起的附加衰减过程所致。通过整体分析和简化模型确定并明确解释了各种重组机制引起的载流子寿命。大量捕获的时间常数(约400ps)比固有缺陷的时间常数快三个数量级。通过激发波长和掺杂条件控制寿命对于制造基于6H-SiC的超快光子器件至关重要。%235703.1-235703.9

著录项

  • 来源
    《Journal of Applied Physics》 |2019年第23期|235703.1-235703.9|共9页
  • 作者单位

    Suzhou Univ Sci & Technol, Sch Math & Phys, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Tech, Suzhou 215009, Peoples R China;

    Suzhou Univ Sci & Technol, Sch Math & Phys, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Tech, Suzhou 215009, Peoples R China;

    Suzhou Univ Sci & Technol, Sch Math & Phys, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Tech, Suzhou 215009, Peoples R China;

    Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China|Northwest Inst Nucl Technol, State Key Lab Intense Pulsed Radiat Simulat & Eff, Xian 710021, Shaanxi, Peoples R China;

    Suzhou Univ Sci & Technol, Sch Math & Phys, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Tech, Suzhou 215009, Peoples R China;

    Suzhou Univ Sci & Technol, Sch Math & Phys, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Tech, Suzhou 215009, Peoples R China;

    Suzhou Univ Sci & Technol, Sch Math & Phys, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Tech, Suzhou 215009, Peoples R China;

    Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号