首页> 外文期刊>Journal of Applied Physics >Tutorial: Concepts for closely mimicking biological learning with memristive devices: Principles to emulate cellular forms of learning
【24h】

Tutorial: Concepts for closely mimicking biological learning with memristive devices: Principles to emulate cellular forms of learning

机译:教程:使用忆阻器设备密切模仿生物学习的概念:模仿细胞学习形式的原理

获取原文
获取原文并翻译 | 示例
       

摘要

The basic building blocks of every neural network are neurons and their inter-cellular connections, called synapses. In nature, synapses play a crucial role in learning and memory, since they are plastic, which means that they change their state depending on the neural activity of the respectively coupled neurons. In neuromorphic systems, the functionality of neurons and synapses is emulated in hardware systems by employing very-large-scale integration technology. In this context, it seems rather natural to use non-volatile memory technology to mimic synaptic functionality. In particular, memristive devices are promising candidates for neuromorphic computing, since they allow one to emulate synaptic functionalities in a detailed way with a significantly reduced power usage and a high packing density. This tutorial aims to provide insight on current investigations in the field to address the following fundamental questions: How can functionalities of synapses be emulated with memristive devices? What are the basic requirements to realize artificial inorganic neurons and synapses? Which material systems and device structures can be used for this purpose? And how can cellular synaptic functionality be used in networks for neuromorphic computing? Even if those questions are part of current research and not yet answered in detail, our aim is to present concepts that address those questions. Furthermore, this tutorial focuses on spiking neural models, which enables mimicking biological computing as realistically as possible. Published by AIP Publishing.
机译:每个神经网络的基本构建模块都是神经元及其与细胞之间的连接,称为突触。本质上,突触在学习和记忆中起着至关重要的作用,因为它们是可塑性的,这意味着它们根据各自耦合的神经元的神经活动来改变其状态。在神经形态系统中,通过采用超大规模集成技术,可以在硬件系统中模拟神经元和突触的功能。在这种情况下,使用非易失性存储技术模仿突触功能似乎很自然。尤其是,忆阻设备是神经形态计算的有希望的候选者,因为它们允许人们以详细的方式模拟突触功能,同时显着降低了功耗并提高了包装密度。本教程旨在提供对该领域当前研究的洞见,以解决以下基本问题:忆阻器设备如何模拟突触的功能?实现人工无机神经元和突触的基本要求是什么?哪些材料系统和设备结构可用于此目的?以及细胞突触功能如何在网络中用于神经形态计算?即使这些问题是当前研究的一部分,但尚未详细回答,我们的目标仍然是提出解决这些问题的概念。此外,本教程重点介绍尖峰神经模型,该模型可以尽可能逼真的模拟生物计算。由AIP Publishing发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2018年第15期|152003.1-152003.13|共13页
  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:09:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号