首页> 外文期刊>Journal of Applied Physics >Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes
【24h】

Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes

机译:硼诱导的位错环的工程设计,用于高效的室温硅发光二极管

获取原文
获取原文并翻译 | 示例
           

摘要

Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom We have studied the role of boron ion energy in the engineering of dislocation loops for silicon light-emitting diodes (LEDs). Boron ions from 10 to 80 keV were implanted in (100) Si at ambient temperature, to a constant fluence of 1 X 10_(15) ions/cm~2. After irradiation the samples were annealed for 20 min at 950℃ by rapid thermal annealing. The samples were analyzed by transmission electron microscopy and Rutherford backscattering spectroscopy. It was found that the applied ion implantation/thermal processing induces interstitial perfect and faulted dislocation loops in {111} habit planes, with Burgers vectors a 12(110) and a/3{111), respectively. The loops are located around the projected ion range, but stretch in depth approximately to the end of range. Their size and distribution depend strongly on the applied ion energy. In the 10 keV boron-implanted samples the loops are shallow, with a mean size of ~30 nm for faulted loops and ~75 nm for perfect loops. Higher energies yield buried, large, and irregularly shaped perfect loops, up to ~500 nm, coexisting with much smaller faulted loops. In the latter case much more Si interstitials are bounded by the loops, which are assigned to a higher supersaturation of interstitials in as-implanted samples, due to separated Frenkel pairs. An interesting phenomenon was found: the perfect loops achieved a steady-state maximum size when the ion energy reached 40 keV. Further increase of the ion energy only increased the number of these large loops and made them bury deeper in the substrate. The results of this work contribute to laying a solid ground in controlling the size and distribution of dislocation loops in the fabrication of silicon LEDs.
机译:英国萨里大学吉利福德大学萨里分校电子与物理科学学院先进技术研究所,GU2 7XH,英国我们已经研究了硼离子能量在硅发光二极管(LED)的位错环工程中的作用。将10至80 keV的硼离子在环境温度下注入(100)Si中,以1 X 10_(15)离子/ cm〜2的恒定通量注入。辐照后,样品通过快速热退火在950℃退火20分钟。通过透射电子显微镜和卢瑟福背散射光谱法分析样品。结果发现,所施加的离子注入/热处理在{111}习惯平面中诱导了间隙完美和有缺陷的位错环,分别具有Burgers向量a 12(110)和a / 3 {111)。回路位于预计的离子范围附近,但深度大约延伸到范围的末端。它们的大小和分布在很大程度上取决于所施加的离子能量。在10 keV硼注入的样品中,环较浅,有缺陷环的平均尺寸为〜30 nm,而完美环的平均尺寸为〜75 nm。较高的能量会产生埋入的,大的和不规则形状的完美环,最大可达〜500 nm,并与较小的断层环共存。在后一种情况下,更多的Si填隙受环的限制,这归因于分离的Frenkel对,从而使植入后样品中的填隙具有更高的过饱和度。发现了一个有趣的现象:当离子能量达到40 keV时,完美的环路达到了稳态的最大尺寸。离子能量的进一步增加只会增加这些大环的数量,并使它们更深地埋在基板中。这项工作的结果有助于在控制硅LED制造中位错环的尺寸和分布方面打下坚实的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号