首页> 外文期刊>Journal of Applied Physics >Effects of engineered Cu spacer on the interlayer coupling and giant magnetoresistance behavior in Pd/[Pd/Co]_2/Cu/[Co/Pd]_4 pseudo-spin-valves with perpendicular anisotropy
【24h】

Effects of engineered Cu spacer on the interlayer coupling and giant magnetoresistance behavior in Pd/[Pd/Co]_2/Cu/[Co/Pd]_4 pseudo-spin-valves with perpendicular anisotropy

机译:工程铜间隔物对垂直各向异性Pd / [Pd / Co] _2 / Cu / [Co / Pd] _4假自旋阀的层间耦合和巨磁阻行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Effects of perpendicular interlayer coupling formed between two perpendicularly magnetized ferromagnetic multilayers separated by engineered Cu spacer on the giant magnetoresistance (GMR) behavior were investigated in the Pd (3 nm)/[Pd (1.2 nm)/Co (0.6 nm)]_2/ Cu (x nm)/[Co (0.3 nm)/Pd (0.6 nm)]_4/Pd (3 nm) pseudo-spin-valves. It was clearly observed that an increase in Cu spacer thickness from 1.6 to 4.9 nm, decreased the perpendicular interlayer coupling field through the Cu spacer and correspondingly decreased the magnetoresistance ratio. It was found that this is due to the degradation of the perpendicular anisotropy caused by strain relaxation in the soft [Co/Pd] multilayers. Further experimental and theoretical analyses verified that the physical nature of the perpendicular interlayer coupling field is directly relevant to the topological and Ruderman-Kittel-Kasuya-Yosida (RKKY) type oscillatory coupling created in the [Co/Pd]_2/Cu/[Co/Pd]_4 multilayers. Unlike the spin valves with in-plane anisotropy, it was clearly verified that the contribution of topological coupling field to the perpendicular interlayer coupling field is negligibly small. In contrast, the oscillatory RKKY coupling field depending on the magnetization angle between the soft and hard [Co/Pd] multilayers dominantly determined the physical characteristics of perpendicular interlayer coupling field. Furthermore, even at a larger surface roughness of greater than 0.25 nm for t_(Cu)=6-16 nm, the slight oscillations in the GMR ratio corresponded well with the oscillations in the interlayer coupling field, although the GMR ratio showed an overall decreasing trend possibly due to shunting through the thicker Cu spacer. This indicates that the perpendicular interlayer coupling rather than the topological coupling is dominant in determining the GMR behavior. Based on the experimental and theoretical results, a physical model enabling the explanation of GMR behavior in [Co/Pd] based pseudo-spin-valves with perpendicular anisotropy is proposed: a perpendicular magnetostatic field, induced in between the soft and hard [Co/Pd] multilayers through Cu spacer by perpendicular anisotropy, is directly relevant to the perpendicular interlayer coupling field and dominantly controls the GMR characteristics. In addition, this model proposes that the GMR ratio is proportional to the sine of the angle between the soft and hard layer magnetizations from the perpendicular direction during magnetic reversal of the soft layer by an applied magnetic field. However this model is only applicable once the magnetization of the soft layer is slightly tilted away from the perpendicular direction by a critical angle (θ_(C1) = 5-10°). Similar perpendicular interlayer coupling characteristics were also observed for the Cu spacers engineered by different input sputtering powers.
机译:在Pd(3 nm)/ [Pd(1.2 nm)/ Co(0.6 nm)] _ 2 /中研究了由工程Cu间隔物分隔的两个垂直磁化​​铁磁多层之间形成的垂直层间耦合对巨磁阻(GMR)行为的影响。 Cu(x nm)/ [Co(0.3 nm)/ Pd(0.6 nm)] _ 4 / Pd(3 nm)假自旋阀。清楚地观察到,Cu间隔物厚度从1.6nm增加到4.9nm,减小了通过Cu间隔物的垂直层间耦合场,并相应地减小了磁阻比。发现这是由于在软的[Co / Pd]多层中由应变松弛引起的垂直各向异性的降低。进一步的实验和理论分析证明,垂直层间耦合场的物理性质与在[Co / Pd] _2 / Cu / [Co中创建的拓扑和Ruderman-Kittel-Kasuya-Yosida(RKKY)型振动耦合直接相关。 / Pd] _4个多层。与具有平面内各向异性的自旋阀不同,已清楚地证明拓扑耦合场对垂直层间耦合场的贡献可以忽略不计。相反,取决于软和硬[Co / Pd]多层之间的磁化角的振荡RKKY耦合场主要决定了垂直层间耦合场的物理特性。此外,即使在t_(Cu)= 6-16 nm的较大表面粗糙度大于0.25 nm的情况下,尽管GMR比显示出总体下降,但GMR比的轻微振荡仍与层间耦合场的振荡很好地对应。这种趋势可能是由于穿过较厚的铜垫片而引起的。这表明在确定GMR行为时,垂直层间耦合而不是拓扑耦合是主要的。根据实验和理论结果,提出了一个物理模型,该模型可以解释具有垂直各向异性的基于[Co / Pd]的伪自旋阀中的GMR行为:在软和硬[Co / Pd]通过垂直方向的各向异性通过Cu间隔层形成多层,与垂直的层间耦合场直接相关,并主要控制GMR特性。另外,该模型提出,在通过施加磁场使软层的磁性反转期间,GMR比与软层和硬层磁化强度从垂直方向起的垂直方向成正比。但是,仅当软层的磁化强度从垂直方向稍微倾斜一个临界角(θ_(C1)= 5-10°)时,该模型才适用。对于通过不同输入溅射功率设计的Cu隔片,也观察到了类似的垂直层间耦合特性。

著录项

  • 来源
    《Journal of Applied Physics》 |2008年第11期|606-612|共7页
  • 作者单位

    Department of Electrical and Computer Engineering, Biomagnetics Laboratory (BML), National University of Singapore, Singapore 117576, Singapore and Department of Electrical and Computer Engineering, Infoimation Storage Materials Laboratory (ISML), National University of Singapore, Singapore 117576, Singapore;

    Department of Electrical and Computer Engineering, Biomagnetics Laboratory (BML), National University of Singapore, Singapore 117576, Singapore and Department of Electrical and Computer Engineering, Infoimation Storage Materials Laboratory (ISML), National University of Singapore, Singapore 117576, Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号