...
首页> 外文期刊>Journal of Applied Physics >Improved gate oxide integrity of strained Si n-channel metal oxide silicon field effect transistors using thin virtual substrates
【24h】

Improved gate oxide integrity of strained Si n-channel metal oxide silicon field effect transistors using thin virtual substrates

机译:使用薄虚拟衬底改善了应变Si n沟道金属氧化物硅场效应晶体管的栅极氧化物完整性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This work presents a detailed study of ultrathin gate oxide integrity in strained Si metal oxide silicon field effect transistors (MOSFETs) fabricated on thin virtual substrates aimed at reducing device self-heating. The gate oxide quality and reliability of the devices are compared to those of simultaneously processed Si control devices and conventional thick virtual substrate devices that have the same Ge content (20%), strained Si channel thickness, and channel strain. The thin virtual substrates offer the same mobility enhancement as the thick virtual substrates (~ 100% compared to universal mobility data) and are effective at reducing device self-heating. Up to 90% improvement in gate leakage current is demonstrated for the strained Si n-channel MOSFETs compared to that for the bulk Si controls. The lower leakage arises from the increased electron affinity in tensile strained Si and is significant due to the sizeable strain generated by using wafer-level stressors. The strain-induced leakage reductions also lead to major improvements in stress-induced leakage current (SILC) and oxide reliability. The lower leakage current of the thin and thick virtual substrate devices compares well to theoretical estimates based on the Wentzel-Kramers-Brillouin approximation. Breakdown characteristics also differ considerably between the devices, with the strained Si devices exhibiting a one order of magnitude increase in time to hard breakdown (T_(HBD)) compared to the Si control devices following high-field stressing at 17 MV cm~(-1). The strained Si devices are exempted from soft breakdown. Experimental based analytical leakage modeling has been carried out across the field range for the first time in thin oxides and demonstrates that Poole-Frenkel (PF) emissions followed by Fowler-Nordheim tunneling dominate gate leakage current at low fields in all of the devices. This contrasts to the frequently reported assumption that direct tunneling dominates gate leakage in ultrathin oxides. We also show that PF emissions are reduced in strained Si devices compared to bulk Si devices. The gate leakage, interface trap density, bulk oxide traps, breakdown characteristics, and SILC are further improved in the thin virtual substrate devices compared to the thick virtual substrate devices. The difference is attributed to surface roughness. The thick virtual substrates exhibit characteristic cross-hatching morphology, whereas the thin virtual substrates do not since they relax primarily through point defects rather than misfit dislocations. Virtual substrate growth techniques that minimize surface roughness will, therefore, benefit all state-of-the-art devices featuring strained Si, strained Si-on-insulator, and strained Ge that are generated by using relaxed SiGe platforms.
机译:这项工作提出了对在薄虚拟衬底上制造的应变硅金属氧化物硅场效应晶体管(MOSFET)中超薄栅极氧化物完整性的详细研究,目的是减少器件的自热。将器件的栅极氧化质量和可靠性与同时处理的硅控制器件和具有相同锗含量(20%),应变硅沟道厚度和沟道应变的常规厚虚拟衬底器件的栅极氧化物质量和可靠性进行了比较。薄的虚拟基板可提供与厚的虚拟基板相同的迁移率增强能力(与通用迁移率数据相比,约为100%),并有效减少了器件的自发热。与整体Si控件相比,应变Si n沟道MOSFET的栅极泄漏电流提高了90%。较低的泄漏归因于拉伸应变Si中电子亲和力的提高,并且由于使用晶圆级应力源产生的较大应变而产生显着泄漏。应变引起的泄漏减少还导致应力引起的泄漏电流(SILC)和氧化物可靠性方面的重大改进。薄型和厚型虚拟衬底设备的较低泄漏电流与基于Wentzel-Kramers-Brillouin近似的理论估计值相比较很好。器件之间的击穿特性也有很大不同,与在17 MV cm〜(-)的高场应力作用下的Si控制器件相比,应变Si器件的硬击穿时间(T_(HBD))增加了一个数量级。 1)。应变硅器件免于软击穿。在薄氧化物中首次在整个场域范围内进行了基于实验的分析泄漏建模,并证明了在所有器件的低场中,Poole-Frenkel(PF)发射以及随后的Fowler-Nordheim隧穿控制了栅极泄漏电流。这与经常报道的假设相反,即直接隧穿在超薄氧化物中占主导地位。我们还表明,与体硅器件相比,应变硅器件的PF排放降低了。与厚的虚拟衬底器件相比,在薄的虚拟衬底器件中,栅极泄漏,界面陷阱密度,体氧化物陷阱,击穿特性和SILC得到了进一步的改善。差异归因于表面粗糙度。较厚的虚拟基板具有特征性的剖面线形态,而较薄的虚拟基板则没有,因为它们主要通过点缺陷而不是错位错位而松弛。因此,使表面粗糙度最小化的虚拟衬底生长技术将使所有采用松弛SiGe平台生成的应变硅,绝缘体上应变硅和应变Ge的先进设备受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号