首页> 外文期刊>Journal of Applied Physics >Atomistic analysis of strain relaxation in [110]-oriented biaxially strained ultrathin copper films
【24h】

Atomistic analysis of strain relaxation in [110]-oriented biaxially strained ultrathin copper films

机译:[110]取向双轴应变超薄铜膜应变弛豫的原子分析

获取原文
获取原文并翻译 | 示例
       

摘要

Results are reported of a systematic atomic-scale computational analysis of strain relaxation mechanisms and the associated defect dynamics in nanometer-scale thin or ultrathin Cu films that are subjected to a broad range of biaxial tensile strains. The films contain pre-existing voids and the film planes are oriented normal to the [110] crystallographic direction. The analysis is based on isothermal-isostrain molecular-dynamics simulations according to an embedded-atom-method parameterization for Cu and employing multimillion-atom slab supercells. In addition to an initial elastic response for an applied biaxial strain level ε<2%, our analysis reveals three regimes in the thin-film mechanical response as ε increases. For 2%≤ε≤6%, biaxial strain relaxation is dominated by emission and propagation of dislocations (plastic flow) from the surface of the void accompanied by ductile void growth. For 6% < ε < 10%, the biaxial strain in the thin film is relaxed by both ductile void growth and emission of dislocations from the surfaces of the thin film. For ε ≥10%, strain relaxation is dominated by dislocation emission from the surfaces of the thin film, leading to a structural transformation from the face-centered cubic to a hexagonal close-packed phase. The defect nucleation mechanisms and the high-strain response of the thin films are found to be significantly different from those observed in <111>-oriented Cu thin films [M. R. Gungor and D. Maroudas, J. Appl. Phys. 97, 113527 (2005); M. R. Gungor and D. Maroudas, Appl. Phys. Lett. 87, 171913 (2005)].
机译:据报道,系统地对应变松弛机制进行了原子级的计算分析,并得出了纳米级的薄或超薄铜膜在广泛的双轴拉伸应变下的相关缺陷动力学。膜包含预先存在的空隙,并且膜平面的取向垂直于[110]晶体学方向。该分析基于等温-等应变分子动力学模拟,该模拟根据Cu的嵌入式原子方法参数化并使用数百万个原子的平板超级电池进行。除了在施加的双轴应变水平ε<2%时的初始弹性响应外,我们的分析还显示出随着ε的增加,薄膜机械响应的三种状态。对于2%≤ε≤6%,双轴应变弛豫主要由位错的发射和传播(塑性流)从空洞表面伴随着延性的空洞生长而引起。对于6%<ε<10%,薄膜中的双轴应变通过延展性空隙的增长和从薄膜表面的位错的释放而得到缓和。对于ε≥10%,应变弛豫主要由薄膜表面的位错发射引起,导致结构从面心立方转变为六方密堆积相。发现薄膜的缺陷成核机理和高应变响应与在<111>取向的Cu薄膜中观察到的显着不同。 R. Gungor和D. Maroudas,J。Appl。物理97,113527(2005); M. R. Gungor和D. Maroudas,应用物理来吧87,171913(2005)]。

著录项

  • 来源
    《Journal of Applied Physics》 |2009年第10期|103519.1-103519.8|共8页
  • 作者单位

    Department of Chemical Engineering, University of Massachusetts-Amherst, Amherst, Massachusetts 01003-3110, USA;

    Department of Chemical Engineering, University of Massachusetts-Amherst, Amherst, Massachusetts 01003-3110, USA;

    Department of Chemical Engineering, University of Massachusetts-Amherst, Amherst, Massachusetts 01003-3110, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号