首页> 外文期刊>Journal of Applied Physics >First-principles investigation of Mn δ-layer doped GaN/AIN/GaN (0001) tunneling junctions
【24h】

First-principles investigation of Mn δ-layer doped GaN/AIN/GaN (0001) tunneling junctions

机译:Mnδ层掺杂的GaN / AIN / GaN(0001)隧道结的第一性原理研究

获取原文
获取原文并翻译 | 示例
           

摘要

Highly spin polarized diluted ferromagnetic semiconductors are expected to be widely used as electrodes in spintronic devices. Based on density functional theory calculations, we investigate the feasibility of using Mn-doped wurtzite GaN/AlN/GaN(0001) trilayer junctions for tunnel magnetoresistance (TMR) devices. We address some key issues affecting the degree of spin polarization and spin tunneling transport with the aim of realizing the appealing half-metallicity and large TMR ratio. We propose digital δ-Mn layer doping in GaN, close to the GaN/AlN interfaces for enhanced performance. Layer-resolved band structure and density of states calculations reveal that Mn dopants produce local metallic or half-metallic states surrounded by the host semiconductor materials. Spin polarized electrons can transport across the interfaces, free of the conductivity mismatch problem owing to the strong hybridization between Mn 3d states and the states of surrounding host atoms. The calculated TMR ratio is found to depend sensitively on the dopant concentration. Half-metallicity and large TMR ratios are predicted for "low" dopant concentrations (1/2 and 1/4 monolayers), while a high concentration (1 monolayer) produces metallic states and thus a decreased TMR ratio. Very thin A1N barrier layers are predicted to yield low TMR ratios. We also study the role of two types of structural defects close to the Mn atoms at the interfaces, namely, atomic mixing (Al replaces Ga and vice versa), and N and Ga vacancies. While the studied atomic interdiffusion defects have little effect on the TMR ratio, both N and Ga vacancies are found to destroy the half-metallicity and lead to a substantial reduction of the TMR ratio, and thus should be eliminated for enhanced device performance.
机译:高度自旋极化的稀释铁磁半导体有望广泛用作自旋电子器件中的电极。基于密度泛函理论计算,我们研究了使用锰掺杂纤锌矿GaN / AlN / GaN(0001)三层结用于隧道磁阻(TMR)器件的可行性。我们解决一些影响自旋极化和自旋隧穿传输程度的关键问题,以期实现吸引人的半金属性和大的TMR比。我们建议在GaN中靠近GaN / AlN界面掺杂数字δ-Mn层,以提高性能。层分辨带结构和态密度计算表明,Mn掺杂剂会产生被主体半导体材料包围的局部金属或半金属态。由于Mn 3d态与周围主体原子态之间的强杂交,自旋极化电子可以跨界面传输,而不会出现电导率不匹配的问题。发现计算出的TMR比值敏感地取决于掺杂剂浓度。对于“低”掺杂剂浓度(1/2和1/4单层),可预测半金属性和大TMR比,而高浓度(1个单层)会产生金属态,从而降低TMR比。预计非常薄的AlN势垒层会产生较低的TMR比。我们还研究了界面处靠近Mn原子的两种类型的结构缺陷的作用,即原子混合(Al代替Ga,反之亦然)以及N和Ga空位。尽管所研究的原子互扩散缺陷对TMR比影响很小,但N和Ga空位都破坏了半金属性并导致TMR比大大降低,因此应消除以提高器件性能。

著录项

  • 来源
    《Journal of Applied Physics》 |2009年第4期|043711.1-043711.9|共9页
  • 作者单位

    School of Physics, The University of Sydney, New South Wales 2006, Australia;

    Paul Scherrer Institut, WHGA/123, CH-5232 Villigen PSI, Switzerland;

    Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112, USA;

    School of Physics, The University of Sydney, New South Wales 2006, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号