首页> 外文期刊>Journal of Applied Physics >Quantum cascade laser investigations of CH_4 and C_2H_2 interconversion in hydrocarbon/H_2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond
【24h】

Quantum cascade laser investigations of CH_4 and C_2H_2 interconversion in hydrocarbon/H_2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

机译:微波等离子体增强金刚石化学气相沉积过程中碳氢化合物/ H_2气体混合物中CH_4和C_2H_2互变的量子级联激光研究

获取原文
获取原文并翻译 | 示例
           

摘要

CH_4 and C_2H_2 molecules (and their interconversion) in hydrocarbon/rare gas/H_2 gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm~(-1) using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H_2 plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH_4 and C_2H_2 molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH_4 and C_2H_2. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH_4 →C_2H_2 conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400
机译:通过视线红外吸收光谱研究了在波数范围内的用于等离子体增强金刚石化学气相沉积(CVD)的微波反应器中烃/稀有气体/ H_2气体混合物中的CH_4和C_2H_2分子(及其相互转化)。使用量子级联激光光谱仪在1276.5-1273.1 cm〜(-1)处测定。探索的参数包括工艺条件[压力,输入功率,烃源,稀有气体(Ar或Ne),输入气体混合比],基材上方的高度(z)以及向预先存在的烃中添加烃后的时间(t)。 Ar / H_2等离子体。参照Mankelevich等人所述的CVD反应器的伴随二维(r,z)模型,如此获得的线积分吸收已经转换为物种数密度。 [J.应用物理104,113304(2008)]。反应器内的气体温度分布可确保所测量的吸收率由反应器冷端的CH_4和C_2H_2分子控制。尽管如此,事实证明,这些测量在测试,张紧和确认模型预测方面具有巨大价值。在标准工艺条件下,研究证实,所有研究的烃源气体(甲烷,乙炔,乙烷,丙炔,丙烷和丁烷)均已转化为以CH_4和C_2H_2为主的混合物。这两种物质之间的相互转化高度取决于局部气体温度和H原子数密度,并因此取决于反应器内的位置。 CH_4→C_2H_2的转化最有效地发生在中心等离子体周围的环形壳中(特征为1400

著录项

  • 来源
    《Journal of Applied Physics》 |2009年第3期|033305.1-033305.15|共15页
  • 作者单位

    School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom;

    School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom;

    School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom;

    Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, United Kingdom;

    Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, United Kingdom;

    Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, United Kingdom;

    Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, United Kingdom;

    Skobel'tsyn Institute of Nuclear Physics, Moscow State University, Leninskie Gory, Moscow 119991, Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号