首页> 外文期刊>Journal of Applied Physics >Thermal conductivity of silicon bulk and nanowires: Effects of isotopic composition, phonon confinement, and surface roughness
【24h】

Thermal conductivity of silicon bulk and nanowires: Effects of isotopic composition, phonon confinement, and surface roughness

机译:硅本体和纳米线的热导率:同位素组成,声子约束和表面粗糙度的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We present a rigorous analysis of the thermal conductivity of bulk silicon (Si) and Si nanowires (Si NWs) which takes into account the exact physical nature of the various acoustic and optical phonon mechanisms. Following the Callaway solution for the Boltzmann equation, where resistive and nonresistive phonon mechanisms are discriminated, we derived formalism for the lattice thermal conductivity that takes into account the phonon incidence angles. The phonon scattering processes are represented by frequency-dependent relaxation time. In addition to the commonly considered acoustic three-phonon processes, a detailed analysis of the role of the optical phonon decay into acoustic phonons is performed. This optical phonon decay mechanism is considered to act as acoustic phonon generation rate partially counteracting the acoustic phonon scattering rates. We have derived the analytical expression describing this physical mechanism which should be included in the general formalism as a correction to the resistive phonon-point-defects and phonon-boundary scattering expressions. The phonon-boundary scattering mechanism is taken as a function of the phonon frequency, incidence angles, and surface roughness. The importance of all the mechanisms we have involved in the model is demonstrated clearly with reference to reported data regarding the isotopic composition effect in bulk Si and Si NW samples. Namely, our model accounts for previously unexplained experimental results regarding (ⅰ) the isotope composition effect on the thermal conductivity of bulk silicon reported by Ruf et al. [Solid State Commun. 115, 243 (2000)], (ⅱ) the size effect on κ(T) of individual Si NWs reported by Li et al. [Appl. Phys. Lett. 83, 2934 (2003)], and (ⅲ) the dramatic decrease in the thermal conductivity for rough Si NWs reported by Hochbaum et al. [Nature (London) 451, 163 (2008)].
机译:我们对体硅(Si)和硅纳米线(Si NWs)的热导率进行了严格的分析,其中考虑了各种声波和光子声子机理的确切物理性质。遵循Boltzmann方程的Callaway解,其中区分了电阻性和非电阻性声子机理,我们在考虑了声子入射角的情况下,得出了晶格导热系数的形式主义。声子散射过程由频率相关的弛豫时间表示。除了通常考虑的声学三声子过程外,还对光学声子衰减为声子的作用进行了详细分析。该光学声子衰减机制被认为是部分抵消声子声子散射速率的声子声子生成速率。我们已经导出了描述该物理机制的解析表达式,应将其包括在一般形式主义中,作为对电阻性声子点缺陷和声子边界散射表达式的修正。声子边界散射机制是声子频率,入射角和表面粗糙度的函数。参考有关大块Si和Si NW样品中同位素组成效应的报告数据,可以清楚地证明我们参与模型的所有机制的重要性。即,我们的模型考虑了Ruf等人报道的关于(ⅰ)同位素组成对大体积硅导热性的未知实验结果。 [固态社区。 115,243(2000)],(ⅱ)Li等人报道的大小对单个Si NWκ(T)的影响。 [应用物理来吧83,2934(2003)],和(1)Hochbaum等人报道了粗糙的硅纳米线的热导率急剧下降。 [Nature(London)451,163(2008)。

著录项

  • 来源
    《Journal of Applied Physics》 |2010年第8期|083503.1-083503.14|共14页
  • 作者单位

    Laboratoire de Nanotechnologie et d'Instrumentation Optique, ICD, CNRS (FRE2848), Universite de Technologie de Troyes, 10010 Troyes, France;

    rnDepartment of Physics, CICECO, University of Aveiro, Aveiro 3810-193, Portugal;

    rnDepartment of Physics, CICECO, University of Aveiro, Aveiro 3810-193, Portugal;

    rnDepartment of Physics, I3N, University of Aveiro, Aveiro 3810-193, Portugal;

    rnGroupe d'Etude des Semiconducteurs, CNRS-UMR 5650, University of Montpellier II, Montpellier 34095, France;

    rnLaboratoire de Nanotechnologie et d'Instrumentation Optique, ICD, CNRS (FRE2848), Universite de Technologie de Troyes, 10010 Troyes, France;

    rnLaboratoire d'Energie Moleculaire et Macroscopique, Combustion CNRS UPR 288, Ecole Centrale Paris, Grande Voie des Vignes, F-92295 Chatenay-Malabry Cedex, France;

    rnLaboratoire de Nanotechnologie et d'Instrumentation Optique, ICD, CNRS (FRE2848), Universite de Technologie de Troyes, 10010 Troyes, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号