...
首页> 外文期刊>Journal of Applied Physics >Enhancement of light absorption using high-k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells
【24h】

Enhancement of light absorption using high-k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells

机译:在硅基薄膜太阳能电池的局部表面等离子体共振中使用高k电介质增强光吸收

获取原文
获取原文并翻译 | 示例
           

摘要

The application of high-dielectric-constant (k) materials, e.g., Si_3N_4, ZrO_2, and HfO_2, to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by using Mie theory and three-dimensional finite-difference time-domain computational simulations. As compared to a conventional SiO_2 dielectric spacing layer, the high-k dielectrics have significant advantages, such as (ⅰ) a polarizability over two times higher, (ⅱ) an extinction cross-section 4.1 times larger, (ⅲ) a 5.6% higher transmission coefficient, (ⅳ) a maximal 39.9% and average 25.0% increase in the transmission of the electromagnetic field, (ⅴ) an absorption of the transmitted electromagnetic field that is a maximum of 2.8 times and an average of 1.4 times greater, and (ⅵ) increased absorption efficiency and extended cover range. Experimental results show that the average absorptance in the visible spectrum using high-k enhanced LSPR was maximally 31.1% higher than that using SiO_2, demonstrating that the high-k dielectrics can be used as a potential spacing layer for light absorption in Au nanoparticle excited LSPR in Si-based thin film solar cells.
机译:已经研究并模拟了高介电常数(k)材料(例如Si_3N_4,ZrO_2和HfO_2)在由Au纳米颗粒结构激发的局部表面等离子体共振(LSPR)中的应用,以增强Si-中的光吸收。 Mie理论和三维有限差分时域计算仿真技术开发出了基于硅的薄膜太阳能电池。与传统的SiO_2电介质间隔层相比,高k电介质具有显着的优势,例如(ⅰ)极化率高出两倍,(ⅱ)消光截面大4.1倍,(ⅲ)高5.6%。传输系数,(ⅳ)电磁场的传输最大增加39.9%,平均增加25.0%,(ⅴ)所吸收的电磁场的吸收最大为2.8倍,平均为1.4倍,并且( ⅵ)提高了吸收效率并扩大了覆盖范围。实验结果表明,高k增强LSPR在可见光谱中的平均吸收率比SiO_2高31.1%,这表明高k电介质可用作金纳米粒子激发LSPR的光吸收的潜在间隔层。在硅基薄膜太阳能电池中。

著录项

  • 来源
    《Journal of Applied Physics》 |2011年第9期|p.093516.1-093516.8|共8页
  • 作者单位

    Sungkyunkwan University, SKKU Advanced Institute of Nona Technology, 300 Cheoncheon-dong,Jangan-gu, Suwon 440-746, South Korea;

    Sungkyunkwan University, SKKU Advanced Institute of Nona Technology, 300 Cheoncheon-dong,Jangan-gu, Suwon 440-746, South Korea;

    Sungkyunkwan University, SKKU Advanced Institute of Nona Technology, 300 Cheoncheon-dong,Jangan-gu, Suwon 440-746, South Korea;

    Sungkyunkwan University, SKKU Advanced Institute of Nona Technology, 300 Cheoncheon-dong,Jangan-gu, Suwon 440-746, South Korea;

    Sungkyunkwan University, SKKU Advanced Institute of Nona Technology, 300 Cheoncheon-dong,Jangan-gu, Suwon 440-746, South Korea;

    Sungkyunkwan University, SKKU Advanced Institute of Nona Technology, 300 Cheoncheon-dong,Jangan-gu, Suwon 440-746, South Korea;

    Sungkyunkwan University, SKKU Advanced Institute of Nona Technology, 300 Cheoncheon-dong,Jangan-gu, Suwon 440-746, South Korea;

    Samsung Electronics Co., Ltd., San 14-1 Nongseo-dong, Giheung-gu, Yongin 446-712, South Korea;

    Samsung Electronics Co., Ltd., San 14-1 Nongseo-dong, Giheung-gu, Yongin 446-712, South Korea;

    Samsung Electronics Co., Ltd., San 14-1 Nongseo-dong, Giheung-gu, Yongin 446-712, South Korea;

    Samsung Electronics Co., Ltd., San 14-1 Nongseo-dong, Giheung-gu, Yongin 446-712, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号