...
首页> 外文期刊>Scientific reports. >Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
【24h】

Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application

机译:实验量化去除型薄硅膜中的光光的有用和寄生吸收,用于太阳能电池应用

获取原文

摘要

A combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. We demonstrate that with a 0.9?μm thick absorber layer the optical losses related to the plasmonic light trapping in the whole structure are insignificant below 730?nm, above which they increase rapidly with increasing illumination wavelength. An average useful absorption of 43% and an average parasitic absorption of 19% over 400-1100?nm wavelength range is measured for μc-Si:H films deposited on optimized self-assembled Ag nanoparticles coupled with a flat mirror (plasmonic back reflector). For this sample, we demonstrate a significant broadband enhancement of the useful absorption resulting in the achievement of 91% of the maximum theoretical Lambertian limit of absorption.
机译:应用光电流和光热光谱技术的组合来实验地定量薄氢化微晶硅(μC-Si:H)薄膜中的光的有用和寄生体吸收,其掺入在后表面的优化金属纳米粒子阵列,用于改进的光捕获通孔共振等离子体散射。光热技术仅考虑总吸收率和光电流信号,仅针对在μC-Si:H层中吸收的光子(有用吸收率);因此,该方法允许独立量化等离子体(或任何其他)光捕集结构的有用和寄生吸收率。我们证明,对于0.9?μm厚的吸收层,与总结构中的等离子体光捕获有关的光学损耗在730℃以下微不足道。在其上方,它们随着照明波长的增加而迅速增加。测量μC-Si:H薄膜的μC-Si:H薄膜的平均有用吸收19%超过400-1100·nm波长范围的μC-Si:H薄膜(等离子体背反射器) 。对于该样本,我们展示了有用的吸收的显着宽带增强,从而实现了最大理论朗伯吸收极限的91%的成就。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号