...
首页> 外文期刊>Journal of Applied Physics >Optical breakdown threshold investigation of 1064 nm laser induced air plasmas
【24h】

Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

机译:1064 nm激光诱导的空气等离子体的光击穿阈值研究

获取原文
获取原文并翻译 | 示例

摘要

We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 μm radius spot size that produces laser intensities up to 3 - 6 TW/cm~2, sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10~8 nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then scaled to classical microwave breakdown theory after correcting for the multiphoton ionization process for different pressures and good agreement, regarding both pressure dependence and breakdown threshold electric fields, is obtained. The effect of the presence of submicron particles on the 1064 nm breakdown threshold was also investigated. The measurements show that higher breakdown field is required, especially at lower pressures, and in close agreement with classical microwave breakdown theory and measurements in air.
机译:我们介绍了1064 nm红外激光辐射对干燥空气的光学击穿阈值的理论和实验测量以及分析,以及多光子和碰撞级联电离过程在10到2000 Torr压力下的击穿阈值测量中的意义。使用两种不同的理论,即多光子和碰撞级联电离理论,获得了击穿阈值激光强度和电场的理论估计。通过将最大450 mJ,6 ns,75 MW最大高功率1064 nm红外激光辐射聚焦到20μm半径点上,通过实验测量和对干燥空气中1064 nm波长下的激光诱导击穿过程的分析,验证了理论估计值能够产生高达3-6 TW / cm〜2的激光强度的尺寸,足以在10至2000 Torr的目标压力下进行空气电离。结合经典和量子理论电离过程,工作压力,对测得的击穿阈值激光强度和电场进行了分析。激光空气击穿的结果在1064 nm处进行了比较分析,相应的结果是较短的激光波长(193 nm)[M。 Thiyagarajan和J.E. Scharer,IEEE Trans。等离子科学36,2512(2008)]和更长的微波波长(10〜8 nm)[A. D. MacDonald,《气体中的微波击穿》(纽约威利,1966年)]。击穿阈值测量的通用标度分析可直接比较从微波到紫外线频率范围内的击穿阈值。将1064 nm激光诱导的用于空气击穿测量的有效场强与基于碰撞级联和多光子击穿理论计算的数据进行比较,成功地确定了比例的碰撞微波部分。在校正了不同压力下的多光子电离过程后,将测得的1064 nm激光强度的击穿阈值缩放为经典的微波击穿理论,并获得了关于压力依赖性和击穿阈值电场的良好一致性。还研究了亚微米颗粒的存在对1064 nm击穿阈值的影响。测量结果表明,需要更高的击穿场,尤其是在较低压力下,并且与经典的微波击穿理论和空气中的测量结果非常吻合。

著录项

  • 来源
    《Journal of Applied Physics 》 |2012年第1期| p.073302.1-073302.8| 共8页
  • 作者单位

    Plasma Engineering Research Lab (PERL), College of Science and Engineering,Texas A&M University-Corpus Christi, Texas 78412, USA;

    Plasma Engineering Research Lab (PERL), College of Science and Engineering,Texas A&M University-Corpus Christi, Texas 78412, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号