首页> 外文期刊>Journal of Applied Physics >Microplasma source for optogalvanic spectroscopy of nanogram samples
【24h】

Microplasma source for optogalvanic spectroscopy of nanogram samples

机译:纳克样品光电动光谱的微等离子体源

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The demand for analysis of smaller samples in isotopic ratio measurements of rare isotopes is continuously rising with the development of new applications, particularly in biomedicine. Interesting in this aspect are methods based on optogalvanic spectroscopy, which have been reported to facilitate both ~(13)C-to-~(12)C and ~(14)C-to-~(12)C ratio measurements with high sensitivity. These methods also facilitate analysis of very small samples, down to the microgram range, which makes them very competitive to other technologies, e.g., accelerator mass spectroscopy. However, there exists a demand for moving beyond the microgram range, especially from regenerative medicine, where samples consist of, e.g., DNA, and, hence, the total sample amount is extremely small. Making optogalvanic spectroscopy of carbon isotopes applicable to such small samples, requires miniaturization of the key component of the system, namely the plasma source, in which the sample is ionized before analysis. In this paper, a novel design of such a microplasma source based on a stripline split-ring resonator is presented and evaluated in a basic optogalvanic spectrometer. The investigations focus on the capability of the plasma source to measure the optogalvanic signal in general, and the effect of different system and device specific parameters on the amplitude and stability of the optogalvanic signal in particular. Different sources of noise and instabilities are identified, and methods of mitigating these issues are discussed. Finally, the ability of the cell to handle analysis of samples down to the nanogram range is investigated, pinpointing the great prospects of stripline split-ring resonators in optogalvanic spectroscopy.
机译:随着新应用的发展,尤其是在生物医学领域,稀有同位素同位素比测量中对较小样品进行分析的需求不断增长。在这方面有趣的是基于光电电流谱的方法,据报道这些方法可以高灵敏度地促进〜(13)C与〜(12)C和〜(14)C与〜(12)C比的测量。这些方法还有助于分析非常小的样品(低至微克范围),这使其与其他技术(例如加速器质谱)的竞争非常激烈。但是,需要超越微克的范围,特别是对于再生医学来说,其范围是样品由例如DNA组成,因此总样品量非常小。使碳同位素的光电光谱学适用于此类小样品,需要使系统的关键组件(即等离子源)小型化,在分析之前,要使样品离子化。在本文中,提出了一种基于带状线裂环谐振器的微等离子体源的新颖设计,并在基本的光电原谱仪中对其进行了评估。研究主要集中在等离子源测量光电信号的能力上,尤其是不同系统和设备特定参数对光电信号的幅度和稳定性的影响。确定了噪声和不稳定性的不同来源,并讨论了缓解这些问题的方法。最后,研究了电池处理纳克级样品分析的能力,指出了带电裂环谐振器在光电分析中的巨大前景。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第3期|033302.1-033302.11|共11页
  • 作者单位

    Angstroem Space Technology Centre, Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden;

    Angstroem Space Technology Centre, Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden;

    Angstroem Space Technology Centre, Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden ,Department of Physics and Astronomy, Ion Physics, Uppsala University, Box 516, SE-75120 Uppsala, Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号