...
首页> 外文期刊>Journal of Applied Physics >Trap states in InAlN/AlN/GaN-based double-channel high electron mobility transistors
【24h】

Trap states in InAlN/AlN/GaN-based double-channel high electron mobility transistors

机译:基于InAlN / AlN / GaN的双通道高电子迁移率晶体管的陷阱态

获取原文
获取原文并翻译 | 示例

摘要

We present a detailed analysis of trap states in InAlN/AlN/GaN double-channel high electron mobility transistors grown by pulsed metal organic chemical vapor deposition. By frequency dependent conductance measurements, trap densities and time constants at both InAlN/AlN/GaN interfaces were determined. Two types of traps, with a high density of up to ~10~(14)cm~(-2)eV~(-1), were observed existing at the higher InAlN/AlN/GaN interface. On the other hand, the density dramatically decreased to ~10~(12)cm~(-2)eV~(-1) for traps located at lower InAlN/AlN/GaN interface on which a low-temperature grown GaN (LT-GaN) layer was deposited. Additionally, photo-assisted capacitance-voltage measurements were performed to estimate deep-level defects, yielding a low density of 1.79 × 10~(11)cm~(-2) acting as negative fixed charges at the LT-GaN and lower InAlN interface.
机译:我们目前对通过脉冲金属有机化学气相沉积法生长的InAlN / AlN / GaN双通道高电子迁移率晶体管中的陷阱态进行详细分析。通过频率相关的电导测量,可以确定InAlN / AlN / GaN界面处的陷阱密度和时间常数。在较高的InAlN / AlN / GaN界面处发现了两种陷阱,其陷阱密度高达〜10〜(14)cm〜(-2)eV〜(-1)。另一方面,位于低温生长的GaN(LT-)的较低InAlN / AlN / GaN界面处的阱的密度急剧降低至〜10〜(12)cm〜(-2)eV〜(-1)。沉积GaN层。此外,还进行了光辅助电容电压测量以估计深层缺陷,从而产生了1.79×10〜(11)cm〜(-2)的低密度,在LT-GaN和较低的InAlN界面上用作负固定电荷。

著录项

  • 来源
    《Journal of Applied Physics 》 |2013年第1期| 174503.1-174503.5| 共5页
  • 作者单位

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China;

    Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号