首页> 外文期刊>Journal of Applied Physics >Optimization of loading pressure waveforms for piston driven isentropic compression
【24h】

Optimization of loading pressure waveforms for piston driven isentropic compression

机译:活塞驱动的等熵压缩的加载压力波形的优化

获取原文
获取原文并翻译 | 示例
           

摘要

Smooth ramp loading with higher pressure amplitude is usually preferred in the isentropic compression experiment (ICE) of condensed materials. Optimizing the pressure waveforms of ICE is important in avoiding any shock wave propagating during ramp loading and raising the peak pressure as high as possible. Most reports on shaping ICE waveforms mainly focused on magnetohydrodynamic numerical simulations; a few used the hydrodynamic theory of isentropic flow. However, some points can be improved. Based on one-dimensional planar isentropic flow theory and regarding the ICE loading pressure exerted on the sample's surface as a time-dependent piston boundary condition, a condition for the ramp-to-shock transition as a compression wave propagates in the sample materials, has been derived that forms a necessary condition to avoid such transitions and determines ICE loading pressure waveforms with shorter rise time. A comparison of results is presented for samples of the maximum thickness and for optimized current waveforms obtained in magnetically driven ICEs.
机译:在冷凝材料的等熵压缩实验(ICE)中,通常首选具有较高压力幅度的平滑斜坡加载。优化ICE的压力波形对于避免在斜坡加载期间传播任何冲击波并尽可能提高峰值压力非常重要。关于整形ICE波形的大多数报道主要集中于磁流体动力学数值模拟。一些使用等熵流的流体力学理论。但是,某些方面可以改进。基于一维平面等熵流理论,并将施加在样品表面上的ICE加载压力视为与时间相关的活塞边界条件,当压缩波在样品材料中传播时,由斜向跃迁过渡的条件具有得出形成避免这种过渡的必要条件并确定上升时间较短的ICE加载压力波形的结果。给出了最大厚度的样品和磁驱动ICE中获得的最佳电流波形的结果比较。

著录项

  • 来源
    《Journal of Applied Physics》 |2014年第24期|243506.1-243506.8|共8页
  • 作者单位

    Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-113, Mianyang 621900, China;

    Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-113, Mianyang 621900, China;

    Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-113, Mianyang 621900, China;

    Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-113, Mianyang 621900, China;

    Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-113, Mianyang 621900, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号