首页> 外文期刊>Journal of Applied Physics >Spin-dependent Seebeck effects in a graphene nanoribbon coupled to two square lattice ferromagnetic leads
【24h】

Spin-dependent Seebeck effects in a graphene nanoribbon coupled to two square lattice ferromagnetic leads

机译:石墨烯纳米带与两个方格铁磁引线耦合时的自旋依赖性塞贝克效应

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We theoretically investigate spin-dependent Seebeck effects for a system consisting of a narrow graphene nanoribbon (GNR) contacted to square lattice ferromagnetic (FM) electrodes with noncollinear magnetic moments. Both zigzag-edge graphene nanoribbons (ZGNRs) and armchair-edge graphene nanoribbons (AGNRs) were considered. Compared with our previous work with two-dimensional honeycomb-lattice FM leads, a more realistic model of two-dimensional square-lattice FM electrodes is adopted here. Using the nonequilibrium Green's function method combining with the tight-binding Hamiltonian, it is demonstrated that both the charge Seebeck coefficient S_C and the spin-dependent Seebeck coefficient S_S strongly depend on the geometrical contact between the GNR and the leads. In our previous work, S_C for a semiconducting 15-AGNR system near the Dirac point is two orders of magnitude larger than that of a metallic 17-AGNR system. However, S_C is the same order of magnitude for both metallic 17-AGNR and semiconducting 15-AGNR systems in the present paper because of the lack of a transmission energy gap for the 15-AGNR system. Furthermore, the spin-dependent Seebeck coefficient S_S for the systems with 20-ZGNR, 17-AGNR, and 15-AGNR is of the same order of magnitude and its maximum absolute value can reach 8 μV/K. The spin-dependent Seebeck effects are not very pronounced because the transmission coefficient weakly depends on spin orientation. Moreover, the spin-dependent Seebeck coefficient is further suppressed with increasing angle between the relative alignments of magnetization directions of the two leads. Additionally, the spin-dependent Seebeck coefficient can be strongly suppressed for larger disorder strength. The results obtained here may provide valuable theoretical guidance in the experimental design of heat spintronic devices.
机译:从理论上讲,我们研究了一个由窄石墨烯纳米带(GNR)接触具有非共线磁矩的方格铁磁(FM)电极组成的系统的自旋依赖性塞贝克效应。锯齿状边缘的石墨烯纳米带(ZGNRs)和扶手椅状边缘的石墨烯纳米带(AGNRs)都被考虑了。与我们以前使用二维蜂窝状FM引线相比,这里采用了更现实的二维方形栅格FM电极模型。使用非平衡格林函数方法和紧密结合的哈密顿量,证明电荷塞贝克系数S_C和自旋相关塞贝克系数S_S都强烈依赖于GNR与引线之间的几何接触。在我们以前的工作中,狄拉克点附近的半导体15-AGNR系统的S_C比金属17-AGNR系统的S_C大两个数量级。然而,由于缺乏15-AGNR系统的传输能隙,因此本文中的S_C对于金属17-AGNR和半导体15-AGNR系统都是相同的数量级。此外,具有20-ZGNR,17-AGNR和15-AGNR的系统的自旋相关塞贝克系数S_S具有相同的数量级,其最大绝对值可以达到8μV/ K。自旋相关的塞贝克效应不是很明显,因为传输系数几乎不依赖于自旋方向。而且,随着两个引线的磁化方向的相对对准之间的角度增加,自旋相关的塞贝克系数被进一步抑制。此外,自旋相关的塞贝克系数可以得到更大的无序强度而被强烈抑制。此处获得的结果可为热自旋电子器件的实验设计提供有价值的理论指导。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第10期|104305.1-104305.8|共8页
  • 作者单位

    Department of Physics, Shaoyang University, Shaoyang 422001, China;

    Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, China;

    Department of Physics, Shaoyang University, Shaoyang 422001, China;

    Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, China;

    Hunan Key Laboratory for Micro-Nano Energy Materials and Device and Department of Physics, Xiangtan University, Xiangtan 411105, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号