...
首页> 外文期刊>Journal of Applied Physics >Microstructure and intrinsic stress evolution during epitaxial film growth of an Ag_(0.93)Al_(0.07) solid solution on Si(111); excessive planar faulting due to quantum confinement
【24h】

Microstructure and intrinsic stress evolution during epitaxial film growth of an Ag_(0.93)Al_(0.07) solid solution on Si(111); excessive planar faulting due to quantum confinement

机译:Si(111)上Ag_(0.93)Al_(0.07)固溶体外延膜生长过程中的微观结构和内应力演化;量子限制导致的过度平面断层

获取原文
获取原文并翻译 | 示例
           

摘要

The correlation of microstructural development and the kinetics of film growth has been investigated during the epitaxial film growth of an ultrathin binary Ago.93Alo.07 solid solution on a Si(111)-7×7 surface at 300K by the combination of high-resolution transmission electron microscopy, X-ray diffraction, scanning tunneling microscopy, low energy electron diffraction, and realtime in-situ stress measurements. Up to a film thickness of 6 ± 2 nm, epitaxial Ago.93Alo.o7 film growth is characterized by the strikingly extensive formation of planar faults parallel to the film/ substrate interface, while at larger thickness the film grows practically defect-free. As revealed by real-time in-situ stress measurements, the extensive formation of planar faults at the very initial stage of growth is not driven by the reduction of the system's elastic strain energy but is rather caused by a striking thickness-dependence of the stacking-fault energy owing to a quantum size effect of the ultrathin metal alloy film, resulting in a frequent succession of fcc and hcp stackings of close-packed layers during the initial stage of film growth. The extensive development of planar faults at the initial stage of film growth (<6 ± 2nm) is associated with the occurrence of a high density of kinks and corners at thereby atomically rough surface ledges, which strongly enhances the downward transport of adatoms from higher to lower terraces (interlayer mass transport) by a reduction of the effective diffusion barrier at the edge of surface steps and by increasing the driving force for adatoms to attach to the surface ledges. As a result, the epitaxial Ago.93Alo.o7 film initially grows in a 2D layer-by-layer type of growth and thus establishes atomically smooth film surfaces. For the practically planar-fault-free growth at thicknesses beyond 6 ± 2 nm, interlayer mass transport becomes distinctively limited, thereby inducing a transition from 2D to 3D type of film growth.
机译:通过高分辨率结合研究了超薄二元Ago.93Alo.07固溶体在300K的Si(111)-7×7表面上外延生长过程中微观结构发展与薄膜生长动力学的相关性。透射电子显微镜,X射线衍射,扫描隧道显微镜,低能电子衍射和实时原位应力测量。高达6±2 nm的膜厚,外延Ago.93Alo.o7膜的生长特征是惊人地广泛形成平行于膜/衬底界面的平面缺陷,而在较大的厚度下,该膜几乎无缺陷地生长。正如实时现场应力测量所揭示的那样,在生长的最初阶段,平面断层的广泛形成不是由系统弹性应变能的降低驱动的,而是由堆垛厚度的显着依赖引起的由于超薄金属合金薄膜的量子尺寸效应,产生了断层能量,从而在薄膜生长的初始阶段导致密堆积层的fcc和hcp堆叠频繁发生。在膜生长的初始阶段(<6±2nm),平面断层的广泛发展与高密度的扭结和拐角的出现有关,从而在原子上形成粗糙的表面壁架,从而大大增强了原子从高处向高处的向下迁移。通过减少表面台阶边缘处的有效扩散势垒,并通过增加吸附原子附着到表面壁架的驱动力,可以降低较低的阶地(层间物质传输)。结果,外延Ago.93Alo.o7薄膜最初以2D逐层生长的方式生长,因此建立了原子光滑的薄膜表面。对于厚度超过6±2 nm的几乎无平面缺陷的生长,层间质量传输受到明显限制,从而引起了从2D型到3D型膜生长的转变。

著录项

  • 来源
    《Journal of Applied Physics》 |2016年第15期|155305.1-155305.12|共12页
  • 作者单位

    Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstrasse 3, D-70569 Stuttgart, Germany,Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois 61801-2902, USA;

    School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China;

    Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstrasse 3, D-70569 Stuttgart, Germany,Institute for Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.;

    Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstrasse 3, D-70569 Stuttgart, Germany;

    Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstrasse 3, D-70569 Stuttgart, Germany,Institute for Materials Science, University of Stuttgart, D-70569 Stuttgart, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号