首页> 外文期刊>Journal of Applied Physics >Thermal stability and relaxation mechanisms in compressively strained Ge_(0.94)Sn_(0.06) thin films grown by molecular beam epitaxy
【24h】

Thermal stability and relaxation mechanisms in compressively strained Ge_(0.94)Sn_(0.06) thin films grown by molecular beam epitaxy

机译:分子束外延生长压缩应变Ge_(0.94)Sn_(0.06)薄膜的热稳定性和弛豫机理

获取原文
获取原文并翻译 | 示例
           

摘要

Strained Ge_(1-x)Sn_x thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge_(0.94)Sn_(0.06) films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge_(0.94)Sn_(0.06) films grown by molecular beam epitaxy.
机译:应变的Ge_(1-x)Sn_x薄膜由于其有望用于未来的微电子和光电器件的高迁移率或发光材料,最近引起了很多关注。尽管如今它们可以以高品质的晶体生长,但通过热处理减轻应变能的机理仍是推测性的。为此,我们研究了应变的Ge_(0.94)Sn_(0.06)薄膜的成分,应变和形貌随温度的演变(以及相互作用)。我们观察到富锡岛的扩散驱动形成(及其自组织)以及表面凹陷(凹坑),分别导致相分离和应变能的(局部)降低。值得注意的是,这些组成和形态的不稳定性是释放能量的主要机制,这表明通过失配产生和传播的弛豫不是分子束外延生长的压缩应变Ge_(0.94)Sn_(0.06)薄膜所固有的。

著录项

  • 来源
    《Journal of Applied Physics》 |2016年第8期|085309.1-085309.11|共11页
  • 作者单位

    Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium,Imec, Kapeldreef 75, 3001 Leuven, Belgium;

    Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium,Imec, Kapeldreef 75, 3001 Leuven, Belgium;

    Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany;

    Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany;

    Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany;

    Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium,Imec, Kapeldreef 75, 3001 Leuven, Belgium,Institut fuer Elektronik-und Sensormaterialien, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany;

    Imec, Kapeldreef 75, 3001 Leuven, Belgium;

    Imec, Kapeldreef 75, 3001 Leuven, Belgium;

    Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium,Imec, Kapeldreef 75, 3001 Leuven, Belgium;

    Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;

    Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West SCR, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan;

    Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium;

    Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium,Imec, Kapeldreef 75, 3001 Leuven, Belgium;

    Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号