...
首页> 外文期刊>Journal of Applied Physics >Electron-phonon relaxation and excited electron distribution in gallium nitride
【24h】

Electron-phonon relaxation and excited electron distribution in gallium nitride

机译:氮化镓中的电子声子弛豫和激发电子分布

获取原文
获取原文并翻译 | 示例

摘要

We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates of inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy "tail" largely covers the conduction band. The shape of the high-energy "tail" strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi "tail" is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.
机译:我们开发了一种由长效外部辐射高度激发的半导体和绝缘体中的能量弛豫理论。我们导出了激发电子的非平衡分布函数方程。此功能的解决方案分为两个部分的总和。低能量贡献集中在导带底部附近的狭窄范围内。它具有有效温度和化学势的费米分布的典型形式。在这种低能量条件下的有效温度和化学势取决于载流子的产生强度,电子-声子弛豫的速度,带间复合的速率以及缺陷上的电子俘获。此外,还有大量的高能校正。这种高能量的“尾巴”在很大程度上覆盖了导带。高能“尾巴”的形状在很大程度上取决于电子-声子弛豫的速率,但与重组和俘获的速率无关。我们将该理论应用于被辐照的GaN中电子的非平衡分布的计算。利用密度泛函微扰理论计算了GaN中从价态到导带的光激发概率和电子-声子耦合概率。我们对氮化镓中分布函数的两个部分的计算表明,当电子-声子散射的速度与重组和俘获的速率相当时,非费米“尾巴”的贡献与低费米的“尾巴”相当。能量费米样成分。因此,高能贡献可从本质上影响被辐射和高掺杂半导体中的电荷传输。

著录项

  • 来源
    《Journal of Applied Physics 》 |2016年第8期| 085708.1-085708.8| 共8页
  • 作者单位

    Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Pervomayskaya st. 91, Yekaterinburg, Russia,Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian, Spain;

    Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian, Spain,Tomsk State Pedagogical University, Kievskaya st. 60, Tomsk, Russia,Tomsk State University, Lenin st. 36, Tomsk, Russia;

    Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian, Spain,Tomsk State University, Lenin st. 36, Tomsk, Russia,Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materials CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian, Spain;

    Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian, Spain,Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materials CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号