...
首页> 外文期刊>Journal of Applied Physics >Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices
【24h】

Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices

机译:纳米级真空间隙对光子增强热电子发射器件的影响

获取原文
获取原文并翻译 | 示例

摘要

A new model of the photon-enhanced thermionic emission (PETE) device with a nanoscale vacuum gap is established by introducing the quantum tunneling effect and the image force correction. Analytic expressions for both the thermionic emission and tunneling currents are derived. The electron concentration and the temperature of the cathode are determined by the particle conservation and energy balance equations. The effects of the operating voltage on the maximum potential barrier, cathode temperature, electron concentration and equilibrium electron concentration of the conduction band, and efficiency of the PETE device are discussed in detail for different given values of the vacuum gap length. The influence of the band gap of the cathode and flux concentration on the efficiency is further analyzed. The maximum efficiency of the PETE and the corresponding optimum values of the band gap and the operating voltage are determined. The results obtained here show that the efficiency of the PETE device can be significantly improved by employing a nanoscale vacuum gap.
机译:通过引入量子隧穿效应和图像力校正,建立了具有纳米级真空间隙的光子增强热电子发射(PETE)器件的新模型。推导了热电子发射和隧穿电流的解析表达式。阴极的电子浓度和温度由颗粒守恒和能量平衡方程式确定。对于真空间隙长度的不同给定值,将详细讨论工作电压对最大势垒,阴极温度,导带的电子浓度和平衡电子浓度以及PETE器件效率的影响。进一步分析了阴极带隙和通量浓度对效率的影响。确定PETE的最大效率以及带隙和工作电压的相应最佳值。此处获得的结果表明,通过采用纳米级真空间隙,可以显着提高PETE装置的效率。

著录项

  • 来源
    《Journal of Applied Physics 》 |2016年第4期| 045106.1-045106.6| 共6页
  • 作者单位

    Fujian Key Laboratory of Semiconductor Materials and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China;

    Fujian Key Laboratory of Semiconductor Materials and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China;

    Fujian Key Laboratory of Semiconductor Materials and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China;

    Fujian Key Laboratory of Semiconductor Materials and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China;

    Fujian Key Laboratory of Semiconductor Materials and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China;

    Fujian Key Laboratory of Semiconductor Materials and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, and Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号