首页> 外文期刊>Journal of Applied Physics >In situ contrast calibration to determine the height of individual diffusing nanoparticles in a tunable confinement
【24h】

In situ contrast calibration to determine the height of individual diffusing nanoparticles in a tunable confinement

机译:原位对比校准,确定可调范围内单个扩散纳米粒子的高度

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We study the behavior of charged spherical Au nanoparticles in a nanofluidic slit as a function of the separation of the symmetrically charged confining surfaces. A dedicated setup called the nano-fluidic confinement apparatus allows us to parallelize the two confining surfaces and to continuously approach them down to direct contact. Interferometric scattering detection is used to measure the particle contrast with 2 ms temporal resolution. We obtain the confinement gap distance from the interference signal of the glass and the oxide-covered silicon wafer surface with nanometer accuracy. We present a three parameter model that describes the optical signal of the particles as a function of particle height and gap distance. The model is verified using nanoparticles immobilized at the glass and the substrate surface. For freely diffusing particles, the envelope of the particle signal as a function of gap distance and the known particle height at tight confinement is used to calibrate the particle signal in situ and obtain all free model parameters. Due to the periodic contrast variation for large gap distances, we obtain a set of possible particle heights for a given contrast value. For a range of small gap distances, this assignment is unique, and the particle height can be measured directly with high accuracy. The high temporal resolution allows us to measure the height occupation probability, which provides a direct link to the free-energy landscape the particles are probing via the Boltzmann distribution. Accordingly by fitting the results to a physical model based on the linear superposition approximation, the physical parameters governing the particle-glass interaction are quantified.
机译:我们研究了纳米流体狭缝中带电球形金纳米粒子的行为,该行为是对称带电约束表面分离的函数。称为纳米流体限制装置的专用设置使我们能够平行化两个限制表面,并连续向下逼近它们以进行直接接触。干涉散射检测用于以2 ms的时间分辨率测量粒子对比度。我们从玻璃的干涉信号和被氧化物覆盖的硅片表面以纳米精度获得了限制间隙距离。我们提出了一个三参数模型,该模型描述了作为颗粒高度和间隙距离的函数的颗粒的光信号。使用固定在玻璃和基板表面的纳米颗粒验证了该模型。对于自由扩散的粒子,粒子信号的包络随间隙距离和严格限制下的已知粒子高度而定,用于原位校准粒子信号并获得所有自由模型参数。由于大间隙距离的周期性对比度变化,对于给定的对比度值,我们获得了一组可能的颗粒高度。对于较小的间隙距离范围,此分配是唯一的,并且可以直接高精度地测量颗粒高度。较高的时间分辨率使我们能够测量高度占据的概率,这提供了直接与粒子通过玻耳兹曼分布进行探测的自由能态势的联系。因此,通过将结果拟合为基于线性叠加近似的物理模型,可以控制控制粒子玻璃相互作用的物理参数。

著录项

  • 来源
    《Journal of Applied Physics》 |2016年第2期|024303.1-024303.12|共12页
  • 作者单位

    IBM Research-Zurich, Saeumerstr. 4, CH-8803 Rueschlikon, Switzerland;

    IBM Research-Zurich, Saeumerstr. 4, CH-8803 Rueschlikon, Switzerland;

    IBM Research-Zurich, Saeumerstr. 4, CH-8803 Rueschlikon, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号