...
首页> 外文期刊>Journal of Applied Physics >Electrical and structural properties of In-implanted Si_(1-x)Ge_x alloys
【24h】

Electrical and structural properties of In-implanted Si_(1-x)Ge_x alloys

机译:植入Si_(1-x)Ge_x合金的电学和结构性能

获取原文
获取原文并翻译 | 示例

摘要

We report on the effects of dopant concentration and substrate stoichiometry on the electrical and structural properties of In-implanted Si_(1-x)Ge_x alloys. Correlating the fraction of electrically active In atoms from Hall Effect measurements with the In atomic environment determined by X-ray absorption spectroscopy, we observed the transition from electrically active, substitutional In at low In concentration to electrically inactive metallic In at high In concentration. The In solid-solubility limit has been quantified and was dependent on the Si_(1-x)Ge_x alloy stoichiometry; the solid-solubility limit increased as the Ge fraction increased. This result was consistent with density functional theory calculations of two In atoms in a Si_(1-x)Ge_x supercell that demonstrated that In-In pairing was energetically favorable for x approx< 0.7 and energetically unfavorable for x approx >0.7. Transmission electron microscopy imaging further complemented the results described earlier with the In concentration and Si_(1-x)Ge_x alloy stoichiometry dependencies readily visible. We have demonstrated that low resistivity values can be achieved with In implantation in Si_(1-x)Ge_x alloys, and this combination of dopant and substrate represents an effective doping protocol.
机译:我们报告了掺杂浓度和衬底化学计量对注入的Si_(1-x)Ge_x合金的电学和结构性能的影响。将霍尔效应测量中的电活性In原子分数与X射线吸收光谱法确定的In原子环境相关联,我们观察到了从低In浓度的电活性取代In过渡到高In浓度的电惰性金属In的转变。固溶度极限已被量化,并且取决于Si_(1-x)Ge_x合金的化学计量;固溶极限随Ge分数的增加而增加。该结果与Si_(1-x)Ge_x超级电池中两个In原子的密度泛函理论计算结果相符,该计算结果表明In-In配对在x约<0.7时在能量上有利,而在x约> 0.7时在能量上不利。透射电子显微镜成像进一步补充了先前描述的结果,In浓度和Si_(1-x)Ge_x合金化学计量的依存关系显而易见。我们已经证明,在Si_(1-x)Ge_x合金中进行In注入可以实现低电阻率值,并且掺杂剂和衬底的这种组合表示有效的掺杂方案。

著录项

  • 来源
    《Journal of Applied Physics 》 |2016年第2期| 025709.1-025709.6| 共6页
  • 作者单位

    Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia;

    Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia;

    Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973, USA;

    Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia;

    KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven, Belgium;

    Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia;

    Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia;

    Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark;

    Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark;

    Department of Applied Physics, School of Applied Sciences, RMIT University, Melbourne 3001, Australia;

    Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号