首页> 外文期刊>Journal of Applied Physics >Experimental demonstration and modeling of the internal light scattering profile within solar cells due to random dielectric scatterers
【24h】

Experimental demonstration and modeling of the internal light scattering profile within solar cells due to random dielectric scatterers

机译:随机介电散射引起的太阳能电池内部光散射轮廓的实验演示和建模

获取原文
获取原文并翻译 | 示例
       

摘要

Many photovoltaic technologies are shifting toward thin-film devices to simultaneously reduce costs and improve carrier collection efficiencies; however, the need for nearly complete light absorption within the semiconductor to achieve large short-circuit currents constrains this thickness reduction. Light trapping strategies can be employed to increase absorption in thinner devices. Random scattering coatings offer a simple, cost-effective way to increase solar cell absorption without the drawback of increased surface recombination or reduced bandwidth that occurs when using surface texturing or gratings. However, coatings that show excellent performance as scatterers in free space generally do not enhance device absorption as much as an ideal Lambertian scatterer. Here, we present an experimental technique and theoretical model that accurately describes the absorption improvement that is achievable with coatings based on random ensembles of dielectric scatterers. We find that the ideal Lambertian model substantially overestimates the experimental scattering results, but significant path length enhancements are still achievable. The experimental techniques presented here should enable the testing of various optical models that attempt to surpass the ray optics light trapping limit, which have in many cases been hindered by the experimental difficulty of coupling the incident light into the optical modes of the absorber.
机译:许多光伏技术正在转向薄膜器件,以同时降低成本并提高载流子收集效率。然而,为了获得大的短路电流而需要在半导体内几乎完全吸收光,这限制了厚度的减小。可以采用光捕获策略来增加更薄设备中的吸收。无规散射涂层提供了一种简单,经济高效的方法来增加太阳能电池的吸收,而没有使用表面纹理或光栅时出现表面重组增加或带宽减少的缺点。但是,在自由空间中作为散射体表现出优异性能的涂料通常不能像理想的朗伯散射体那样提高器件的吸收能力。在这里,我们提供了一种实验技术和理论模型,可以准确地描述基于介电散射体随机集合的涂层可以实现的吸收改善。我们发现理想的Lambertian模型实质上高估了实验散射结果,但是仍然可以实现显着的路径长度增强。此处介绍的实验技术应能够测试试图超越射线光学装置的光捕获极限的各种光学模型,在很多情况下,由于将入射光耦合到吸收器的光学模式的实验困难而受到阻碍。

著录项

  • 来源
    《Journal of Applied Physics》 |2016年第2期|023104.1-023104.8|共8页
  • 作者单位

    Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740, USA;

    Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号