...
首页> 外文期刊>Journal of Applied Physics >Identification of the limiting factors for high-temperature GaAs, GaInP, and AIGalnP solar cells from device and carrier lifetime analysis
【24h】

Identification of the limiting factors for high-temperature GaAs, GaInP, and AIGalnP solar cells from device and carrier lifetime analysis

机译:通过器件和载流子寿命分析确定高温GaAs,GaInP和AIGalnP太阳能电池的限制因素

获取原文
获取原文并翻译 | 示例

摘要

We analyze the temperature-dependent dark saturation current density and open-circuit voltage (V_(OC)) for GaAs, GalnP, and AIGalnP solar cells from 25 to 400 ℃. As expected, the intrinsic carrier concentration, n_i„ dominates the temperature dependence of the dark currents. However, at 400 ℃, we measure V_(OC) that is ~50 mV higher for the GaAs solar cell and ~60-110 mV lower for the GalnP and AIGalnP solar cells compared to what would be expected from commonly used solar cell models that consider only the n_i ~2 temperature dependence. To better understand these deviations, we measure the carrier lifetimes of p-type GaAs, GalnP, and AIGalnP double heterostruc-tures (DHs) from 25 to 400 ℃ using time-resolved photoluminescence. Temperature-dependent minority carrier lifetimes are analyzed to determine the relative contributions of the radiative recombination, interface recombination, Shockley-Read-Hall recombination, and thermionic emission processes. We find that radiative recombination dominates for the GaAs DHs with the effective lifetime approximately doubling as the temperature is increased from 25 ℃ to 400 ℃. In contrast, we find that thermionic emission dominates for the GalnP and AIGalnP DHs at elevated temperatures, leading to a 3-4× reduction in the effective lifetime and ~40× increase in the surface recombination velocity as the temperature is increased from 25 ℃ to 400 ℃. These observations suggest that optimization of the minority carrier confinement layers for the GalnP and AIGalnP solar cells could help to improve V_(OC) and solar cell efficiency at elevated temperatures. We demonstrate V_(OC) improvement at 200-400 ℃ in GalnP solar cells fabricated with modified AIGalnP window and back surface field layers.
机译:我们分析了温度为25至400℃的GaAs,GalnP和AIGalnP太阳能电池的温度依赖性暗饱和电流密度和开路电压(V_(OC))。正如预期的那样,固有载流子浓度n_i„决定了暗电流的温度依赖性。但是,在400℃时,我们测得的V_(OC)与普通太阳能电池模型相比,GaAs太阳能电池的V_(OC)高约50 mV,而GalnP和AIGalnP太阳能电池的V_(OC)低约60-110 mV。仅考虑n_i〜2温度依赖性。为了更好地理解这些偏差,我们使用时间分辨光致发光测量了25至400℃的p型GaAs,GalnP和AIGalnP双异质结构(DHs)的载流子寿命。分析与温度相关的少数载流子寿命,以确定辐射复合,界面复合,Shockley-Read-Hall复合和热电子发射过程的相对贡献。我们发现,随着温度从25℃升高到400℃,GaAs DHs的辐射复合起主要作用,其有效寿命大约增加一倍。相反,我们发现在高温下,GalnP和AIGalnP DHs的热电子发射起主导作用,随着温度从25℃升高到25℃,有效寿命降低3-4倍,表面重组速度提高约40倍。 400℃。这些观察结果表明,优化GalnP和AIGalnP太阳能电池的少数载流子限制层可以帮助提高高温下的V_(OC)和太阳能电池效率。我们展示了用改良的AIGalnP窗口和背面场层制造的GalnP太阳能电池在200-400℃时V_(OC)的改善。

著录项

  • 来源
    《Journal of Applied Physics 》 |2017年第23期| 233102.1-233102.7| 共7页
  • 作者单位

    National Renewable Energy Laboratory, Golden, Colorado 80401, USA;

    National Renewable Energy Laboratory, Golden, Colorado 80401, USA;

    National Renewable Energy Laboratory, Golden, Colorado 80401, USA;

    National Renewable Energy Laboratory, Golden, Colorado 80401, USA;

    National Renewable Energy Laboratory, Golden, Colorado 80401, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号