首页> 外文OA文献 >Desarrollo de células solares de doble unión de GaInP/GaAs para concentraciones luminosas elevadas (Development of GaInP/GaAs dual-junction solar cells for high light concentrations).
【2h】

Desarrollo de células solares de doble unión de GaInP/GaAs para concentraciones luminosas elevadas (Development of GaInP/GaAs dual-junction solar cells for high light concentrations).

机译:高光浓度GaInP / GaAs双结太阳能电池的开发(高光浓度GaInP / GaAs双结太阳能电池的开发)。

摘要

This Thesis deals with the development of the monolithic GaInP/GaAs dual-junction solar cell for high concentration applications, including its theoretical analysis and modeling, and the experimental manufacture and characterization of the needed semiconductor structures grown by metal-organic vapour phase epitaxy (MOVPE), and of the final concentrator solar cell devices. A special emphasis is put on the optimization of the solar cell concentration response, as the most important distinctive characteristic when compared to other GaInP/GaAs dual-junction solar cells developed in other laboratories.ududIn the first part of this Thesis, a theoretical study of the concentrator GaInP/GaAs dual-junction solar cell is presented. The efficiency limit of different configurations of this solar cell, and the intrinsic model of the monolithic, series connected approach are analyzed. The extrinsic properties and distributed effects exhibited by this kind of devices are then studied by using quasi-3D models based on distributed circuit units. The optimum front grid layout for the operation of our GaInP/GaAs dual-junction solar cell under high concentrations is designed, and the effect of non-uniform light profiles is appraised.ududThe second part begins with an introduction to the experimental research carried out in this Thesis, in which the MOVPE technology available at I.E.S. – U.P.M. is described. A review of the semiconductor material and solar cell device characterization techniques used is also presented, emphasizing on the issues specific to the dual-junction solar cell devices. ududThe experimental development of the GaInP top cell, the tunnel junction and the complete dual-junction solar cell is then dealt with. As for the GaInP top cell, the MOVPE growth of the GaInP and Al(Ga)InP materials is first tackled. These materials are then used to build the semiconductor structure of the GaInP solar cell, paying an special attention to the front and back surface passivation. As for the tunnel junction, the material research conducted to obtain very high doping levels in GaAs and AlGaAs is firstly treated. Then the experimental work concerning the study of the main tunnel junction semiconductor structure approaches developed in this Thesis is presented. Both the performance of the tunnel junction devices fabricated and the influence of their MOVPE growth on the growth and quality of the GaInP top cell is assessed in each case. A record peak current density of 10100 A/cm2 and a series resistance at zero bias as low as 1.6•10-5 ohms•cm2 are achieved with a AlGaAs/GaAs tunnel junction doped with carbon and tellurium. udIn the last chapter of this part, the most representative dual-junction solar cell designs developed in this Thesis are explained and analyzed by means of quantum efficiency, I-V curves and concentration response measurements. The weaknesses of each design are assessed experimentally and theoretically in order to determine the modifications required to improve the performance of the solar cell. An efficiency of 32.6% at 1000 suns is eventually achieved, which is the highest value reported so far for a monolithic dual-junction solar cell. Moreover, the simulations carried out show that an efficiency approaching 34 % is attainable.ududIn the last part, the summary and global conclusions of this Thesis are outlined and some future research activities are envisaged.ud
机译:本文主要针对高浓度应用的单片GaInP / GaAs双结太阳能电池的开发,包括其理论分析和建模,以及通过金属有机气相外延(MOVPE)生长所需的半导体结构的实验制造和表征),以及最终的集中器太阳能电池设备。与其他实验室开发的其他GaInP / GaAs双结太阳能电池相比,太阳能电池的浓度响应最优化是其最重要的独特特性。 ud ud在本文的第一部分,提出了聚光器GaInP / GaAs双结太阳能电池的理论研究。分析了该太阳能电池不同配置的效率极限,并分析了整体串联方法的内在模型。然后,使用基于分布式电路单元的准3D模型,研究了这类器件所表现出的外部特性和分布效应。设计了适合我们的G​​aInP / GaAs双结太阳能电池在高浓度下运行的最佳前网格布局,并评估了不均匀光分布的影响。 ud ud第二部分从实验研究的介绍开始在本论文中进行,其中IES提供了MOVPE技术– U.P.M.描述。还重点介绍了双结太阳能电池器件所特有的问题,对使用的半导体材料和太阳能电池器件的表征技术进行了综述。然后处理GaInP顶部电池,隧道结和完整的双结太阳能电池的实验开发。对于GaInP顶部电池,首先要解决GaInP和Al(Ga)InP材料的MOVPE生长问题。然后将这些材料用于构建GaInP太阳能电池的半导体结构,并特别注意正面和背面的钝化。对于隧道结,首先要进行材料研究以获取很高的GaAs和AlGaAs掺杂水平。然后介绍了与本文主要研究的隧道结半导体结构方法有关的实验工作。在每种情况下,都评估了所制造的隧道结器件的性能以及其MOVPE生长对GaInP顶层电池的生长和质量的影响。使用掺杂了碳和碲的AlGaAs / GaAs隧道结,可实现10100 A / cm2的创纪录峰值电流密度和零偏置时低至1.6•10-5 ohms•cm2的串联电阻。 ud在本部分的最后一章中,将通过量子效率,IV曲线和浓度响应测量来解释和分析本论文中最具代表性的双结太阳能电池设计。为了确定改进太阳能电池性能所需的修改,从实验和理论上评估了每种设计的弱点。最终在1000个太阳下达到32.6%的效率,这是迄今为止单片双结太阳能电池的最高报告值。此外,所进行的仿真表明,效率可达到34%。 ud ud最后一部分概述了本论文的概述和整体结论,并展望了未来的一些研究活动。

著录项

  • 作者

    García Vara Iván;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号