首页> 外文期刊>Journal of Applied Physics >Joule heat-induced breakdown of organic thin-film devices under pulse operation
【24h】

Joule heat-induced breakdown of organic thin-film devices under pulse operation

机译:脉冲操作下焦耳热诱导的有机薄膜器件的击穿

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We investigated the influence of the substrate's thermal conductivities (κ) and the widths of the electrical pulses (τ_(pulse)) on the maximum current densities (J_(max)) in organic thin-film devices. We also estimated the temperature rise (△T) inside devices under the pulse operation using numerical calculations to interpret the observed differences in J_(max) For a long τ_(pulse)of 5 μs, J_(max) is higher for devices with high-/: sapphire substrates (around 1.2 kA/cm~2) than devices with low-κ plastic substrates (around 0.4 kA/cm~2). This is because high-κ sapphire substrates can work as heat sinks to relax AT for such a long τ_(pulse). Operation of devices with high-κ sapphire substrates for a short τ_(pulse) of 70 ns resulted in further relaxation of △T, leading to an increase of J_(max) to around 5 kA/ cm~2. Interestingly, for such a short τ_(pulse) devices with high-κ sapphire and low-κ plastic substrates showed similar J_(max) and AT values, the reason for which may be that it is difficult for the generated Joule heat to travel to the substrate across a low-k organic layer within this short time.
机译:我们研究了有机薄膜器件中基板的热导率(κ)和电脉冲宽度(τ_(pulse))对最大电流密度(J_(max))的影响。我们还使用数值计算来解释在J_(max)中观察到的差异,从而估算脉冲操作下器件内部的温升(△T)。对于5 s的较长τ_(pulse)而言,对于高功率器件,J_(max)更高-/:蓝宝石衬底(约1.2 kA / cm〜2)比带有低κ塑料衬底的器件(约0.4 kA / cm〜2)。这是因为高κ的蓝宝石衬底可以用作散热器以在如此长的τ_(pulse)内放松AT。具有70 ns短τ_(脉冲)的高κ蓝宝石衬底的器件的操作导致△T进一步弛豫,导致J_(max)增加到大约5 kA / cm〜2。有趣的是,对于具有高κ蓝宝石和低κ塑料衬底的如此短的τ_(脉冲)器件,其J_(max)和AT值相似,其原因可能是所产生的焦耳热难以传播到在很短的时间内在低k有机层上形成衬底。

著录项

  • 来源
    《Journal of Applied Physics》 |2017年第19期|195503.1-195503.6|共6页
  • 作者单位

    Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan,Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395, Japan;

    Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan,Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395, Japan,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan;

    Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan;

    Nano-Science and Nano-Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan;

    Nano-Science and Nano-Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan,Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku, Tokyo 162-0041, Japan;

    Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan,Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395, Japan,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号