...
首页> 外文期刊>Journal of Applied Physics >Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell
【24h】

Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell

机译:激光加热金刚石-砧座中熔体和流体流动的有限元建模

获取原文
获取原文并翻译 | 示例
           

摘要

The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.
机译:激光加热的金刚石砧盒被广泛用于实验室研究材料在高压和高温下的行为,包括在极端条件下的熔融曲线和液体性能。长期以来,钻石电池中的激光加热与样品中的类流体运动相关联,该运动通常用于确定熔点,并且通常被描述为对流形式。但是,对该系统的流动行为知之甚少。本文开发了对激光加热的金刚石砧座中熔化和流动的定量处理,以使实验运动与感兴趣的特性(包括熔点和粘度)物理相关。数值有限元模型用于表征样品中的温度分布,融化,浮力以及由此产生的自然对流。我们发现自然对流最容易解释实验中的连续流体运动。流体速度的峰值接近于每秒合理的粘度值,其速度足够快,可以通过实验检测出来,这支持使用对流运动作为融化的标准。对流取决于熔体的物理性质和样品的几何形状,并且太迟钝而无法检测到在环境条件下明显高于水的粘度,这意味着在检测到对流运动时,熔体粘度的上限约为1 mPa s。熔体粘度和速度之间的简单分析关系表明,如果已知样品的基本热力学和几何参数,则可以从流速进行直接粘度测量。

著录项

  • 来源
    《Journal of Applied Physics》 |2017年第14期|145904.1-145904.13|共13页
  • 作者单位

    Departamento de Geociencias, Universidad de Los Andes, Bogota, Colombia, School of Physics and Astronomy and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom;

    Departamento de Fisica, Universidad de Los Andes, Bogota, Colombia;

    School of Physics and Astronomy and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom, Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号