...
首页> 外文期刊>Journal of Applied Physics >Plasma potential of a moving ionization zone in DC magnetron sputtering
【24h】

Plasma potential of a moving ionization zone in DC magnetron sputtering

机译:直流磁控溅射中移动电离区的等离子体电势

获取原文
获取原文并翻译 | 示例

摘要

Using movable emissive and floating probes, we determined the plasma and floating potentials of an ionization zone (spoke) in a direct current magnetron sputtering discharge. Measurements were recorded in a space and time resolved manner, which allowed us to make a three-dimensional representation of the plasma potential. From this information we could derive the related electric field, space charge, and the related spatial distribution of electron heating. The data reveal the existence of strong electric fields parallel and perpendicular to the target surface. The largest E-fields result from a double layer structure at the leading edge of the ionization zone. We suggest that the double layer plays a crucial role in the energization of electrons since electrons can gain several 10eV of energy when crossing the double layer. We find sustained coupling between the potential structure, electron heating, and excitation and ionization processes as electrons drift over the magnetron target. The brightest region of an ionization zone is present right after the potential jump, where drifting electrons arrive and where most local electron heating occurs. The ionization zone intensity decays as electrons continue to drift in the E_z x B direction, losing energy by inelastic collisions; electrons become energized again as they cross the potential jump. This results in the elongated, arrowhead-like shape of the ionization zone. The ionization zone moves in the -E_z x B direction from which the to-be-heated electrons arrive and into which the heating region expands; the zone motion is dictated by the force of the local electric field on the ions at the leading edge of the ionization zone. We hypothesize that electron heating caused by the potential jump and physical processes associated with the double layer also apply to magnetrons at higher discharge power, including high power impulse magnetron sputtering.
机译:使用可移动的发射探针和浮动探针,我们确定了直流磁控溅射放电中电离区(辐条)的等离子体和浮动电位。以空间和时间分辨的方式记录测量值,这使我们能够对等离子体电势进行三维表示。从这些信息中,我们可以得出相关的电场,空间电荷以及相关的电子加热空间分布。数据揭示了平行于和垂直于目标表面的强电场的存在。最大的电场由电离区前缘的双层结构产生。我们建议双层结构在电子的激励中起关键作用,因为当穿过双层结构时,电子可以获得10eV的能量。我们发现随着电子在磁控管靶上漂移,势能结构,电子加热以及激发和电离过程之间存在持续的耦合。电离区最亮的区域出现在电势跃迁之后,在这里漂移的电子到达,并且大部分发生局部电子加热。当电子继续沿E_z x B方向漂移时,电离区的强度会衰减,并通过非弹性碰撞而失去能量。电子越过电势跃迁时再次变得充满能量。这导致电离区的细长的箭头状形状。电离区沿-E_z x B方向移动,待加热的电子从该方向到达,加热区域扩展到该区域。区域运动由电离区域前沿处离子上的局部电场力决定。我们假设由电位跃迁和与双层相关的物理过程引起的电子加热也适用于具有较高放电功率的磁控管,包括高功率脉冲磁控管溅射。

著录项

  • 来源
    《Journal of Applied Physics 》 |2017年第6期| 063302.1-063302.17| 共17页
  • 作者

    Matjaž Panjan; André Anders;

  • 作者单位

    Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 53, Berkeley, California 94720, USA ,Jozef Stefan Institute, Jamova 39,1000 Ljubljana, Slovenia;

    Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 53, Berkeley, California 94720, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号