...
首页> 外文期刊>Journal of Applied Physics >Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells
【24h】

Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells

机译:硅有机异质结太阳能电池的超薄有机界面偶极子对电子的选择性接触

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the last years, novel materials for the formation of electron-selective contacts on n-type crystalline silicon (c-Si) heterojunction solar cells were explored as an interfacial layer between the metal electrode and the c-Si wafer. Besides inorganic materials like transition metal oxides or alkali metal fluorides, also interfacial layers based on organic molecules with a permanent dipole moment are promising candidates to improve the contact properties. Here, the dipole effect plays an essential role in the modification of the interface and effective work function of the contact. The amino acids L-histidine, L-tryptophan, L-phenylalanine, glycine, and sarcosine, the nucleobase adenine, and the heterocycle 4-hydroxypyridine were investigated as dipole materials for an electron-selective contact on the back of p- and n-type c-Si with a metal electrode based on aluminum (Al). Furthermore, the effect of an added fluorosurfactant on the resulting contact properties was examined. The performance of n-type c-Si solar cells with a boron diffusion on the front was significantly increased when L-histidine and/or the fluorosurfactant was applied as a full-area back surface field. This improvement was attributed to the modification of the interface and the effective work function of the contact by the dipole material which was corroborated by numerical device simulations. For these solar cells, conversion efficiencies of 17.5% were obtained with open-circuit voltages (V_(oc)) of 625 mV and fill factors of 76.3%, showing the potential of organic interface dipoles for silicon organic heterojunction solar cells due to their simple formation by solution processing and their low thermal budget requirements.
机译:近年来,人们探索了在n型晶体硅(c-Si)异质结太阳能电池上形成电子选择性接触的新型材料,作为金属电极和c-Si晶片之间的界面层。除了像过渡金属氧化物或碱金属氟化物之类的无机材料外,基于具有永久偶极矩的有机分子的界面层也有望改善接触性能。在此,偶极效应在接触面的修改和有效的功函数中起着至关重要的作用。研究了氨基酸L-组氨酸,L-色氨酸,L-苯丙氨酸,甘氨酸和肌氨酸,核碱基腺嘌呤和杂环4-羟基吡啶作为偶极材料,用于p-和n-背面的电子选择性接触c-Si型,带有基于铝(Al)的金属电极。此外,检查了添加的含氟表面活性剂对所得接触性能的影响。当将L-组氨酸和/或含氟表面活性剂用作全面积背面场时,正面具有硼扩散的n型c-Si太阳能电池的性能显着提高。这种改进归因于偶极材料对界面的修改和有效的接触功函数,这已通过数值设备仿真得到了证实。对于这些太阳能电池,开路电压(V_(oc))为625 mV,填充系数为76.3%,转换效率为17.5%,这表明有机界面偶极子对硅有机异质结太阳能电池具有潜在的优势,因为它们的简单性通过溶液处理形成,并且其热预算要求低。

著录项

  • 来源
    《Journal of Applied Physics》 |2018年第2期|024505.1-024505.10|共10页
  • 作者单位

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany;

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany;

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany;

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany;

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany;

    Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany;

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany;

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany;

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany,Department of Sustainable Systems Engineering (INATECH), University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号