首页> 外文期刊>Journal of applied functional analysis >Chaotic Structure Test and Predictability Analysis on Traffic Time Series in the City of Istanbul
【24h】

Chaotic Structure Test and Predictability Analysis on Traffic Time Series in the City of Istanbul

机译:伊斯坦布尔市交通时间序列的混沌结构测试和可预测性分析

获取原文
获取原文并翻译 | 示例

摘要

Empirical studies suggest that traffic flow generally exhibits irregular and complex behavior. Modeling of traffic flow characteristics is difficult and needs new techniques. In this study, we analyzed chaotic structure in traffic time series data collected from an urban arterial in Istanbul over a period of about 1 week. Nonlinear techniques (correlation dimension and metric entropy) are used to identify chaotic structure. After detecting chaotic characteristics, the predictability of time series data was examined. It is found that the traffic flow at the main road of Ikitelli - Mahmutbey location displayed a periodicity close to 24 hrs, and a 100 minute long prediction interval which is indicative of low dimensional chaos as found from the computed metric entropy. Traffic time series data included speed, occupancy rates, and volume at each lane on the main road of Ikitelli - Mahmutbey on the European side.
机译:实证研究表明,交通流通常表现出不规则和复杂的行为。交通流特征的建模很困难,需要新技术。在这项研究中,我们分析了在大约1周的时间内从伊斯坦布尔的城市动脉收集的交通时间序列数据中的混沌结构。非线性技术(相关维数和度量熵)用于识别混沌结构。在检测到混沌特征之后,检查了时间序列数据的可预测性。结果发现,在伊基泰利-马赫贝地区的主要道路上,交通流表现出接近24小时的周期性和100分钟长的预测间隔,这表明从计算的度量熵中可以发现低维混沌。交通时间序列数据包括欧洲一侧伊基泰利-马赫姆贝蒂主干道上每个车道的速度,占用率和通行量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号