首页> 外文期刊>Journal of applied econometrics >DO HIGH-FREQUENCY DATA IMPROVE HIGH-DIMENSIONAL PORTFOLIO ALLOCATIONS?
【24h】

DO HIGH-FREQUENCY DATA IMPROVE HIGH-DIMENSIONAL PORTFOLIO ALLOCATIONS?

机译:高频数据是否会改善高维产品组合分配?

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. We construct global minimum variance portfolios based on the constituents of the S&P 500. HF-based covariance matrix predictions are obtained by applying a blocked realized kernel estimator, different smoothing windows, various regularization methods and two forecasting models. We show that HF-based predictions yield a significantly lower portfolio volatility than methods employing daily returns. Particularly during the 2008 financial crisis, these performance gains hold over longer horizons than previous studies have shown, translating into substantial utility gains for an investor with pronounced risk aversion.
机译:本文讨论了有关高频(HF)数据在大规模投资组合分配中的实用性的辩论。我们根据标准普尔500指数的成分构建全局最小方差投资组合。通过应用已实现的有核估计量,不同的平滑窗口,各种正则化方法和两个预测模型,可以获得基于HF的协方差矩阵预测。我们表明,基于HF的预测比采用每日收益的方法产生的投资组合波动性要低得多。尤其是在2008年金融危机期间,这些绩效收益的持有期比以前的研究显示的更长,对于具有明显避险意识的投资者而言,这转化为可观的效用收益。

著录项

  • 来源
    《Journal of applied econometrics》 |2015年第2期|263-290|共28页
  • 作者单位

    Department of Statistics and Operations Research, University of Vienna, Oskar-Morgenstern-Platz 1,1090 Vienna, Austria;

    Barclays Inc., New York, NY, USA;

    Institute for Statistics and Econometrics, Humboldt-Universitaet zu Berlin, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号