首页> 外文期刊>Journal of Analytical & Applied Pyrolysis >Estimation of lignocellulosic biomass pyrolysis product yields using artificial neural networks
【24h】

Estimation of lignocellulosic biomass pyrolysis product yields using artificial neural networks

机译:人工神经网络估计木质纤维素生物质热解产物产量

获取原文
获取原文并翻译 | 示例

摘要

As the push towards more sustainable ways to produce energy and chemicals intensifies, efforts are needed to refine and optimize the systems that can give an answer to these needs. In the present work, the use of neural networks as modelling tools for lignocellulosic biomass pyrolysis main products yields estimation was evaluated. In order to achieve this, the most relevant compositional and reaction parameters for lignocellulosic biomass pyrolysis were reviewed and their effect over the main products yields was assessed. Based on relevant literature data, a database was set up, containing parameters and experimental results from 32 published studies for a total of 482 samples, including both fast and slow pyrolysis experiments performed on a heterogeneous collection of lignocellulosic biomasses. The parameters that in the database configured as best predictors for the solid, liquid and gaseous products were determined through preliminary tests and were then used to build reduced models, one for each of the main products, which use five parameters instead of the full set for the estimation of yields. The procedures included hyperparameter optimizations steps. The performances of these reduced models were compared to those of the ones obtained using the full set of parameters as inputs by using the root mean squared error (RMSE) as metric. For both the char and gas products, the best results were consistently achieved by the reduced versions of the network (RMSE 5.1 wt% ar and 5.6 wt% ar respectively), while for the liquid product the best result was given by the full network (RMSE 6.9 wt% ar) indicating substantial value in proper selection of the input features. In general, the char models were the best performing ones. Additional models for the liquid and gas product featuring char as additional input to the system were also devised and obtained better performance (RMSE 5.5 wt % ar and 4.9 wt% ar respectively) compared to the original ones. Models based on single studies were also included in order to showcase both the capabilities of the tool and the challenges that arise when trying to build a generalizable model of this kind. Overall, artificial neural networks were shown to be an interesting tool for the construction of setup-unspecific biomass pyrolysis product yield models. The obstacles standing currently in the way of a more accurate modelling of the system were highlighted, along with certain literature discrepancies, which hinder reliable quantitative comparison of experimental conditions and results among separate studies.
机译:由于推动更可持续的生产能源和化学品的加剧,因此需要努力来改进和优化可以对这些需求的答案的系统。在本作工作中,评估使用神经网络作为木质纤维素生物质热解热的造型工具产生的产量估计。为了实现这一点,评估了对木质纤维素生物质热解的最相关的组成和反应参数,并评估了对主要产品产率的影响。基于相关文献数据,建立了一个数据库,含有32种公开研究的参数和实验结果,总共482个样品,包括在木质纤维素生物量的异质集合上进行快速和缓慢的热解实验。通过初步测试确定配置为固体,液体和气态产品的最佳预测器的数据库中的参数,然后使用用于每个主要产品的减少型号,用于使用五个参数而不是完整集收益率的估计。该过程包括HyperParameter优化步骤。将这些减少模型的性能与使用全套参数作为输入获得的那些进行比较,通过使用作为度量标准的根均方平方误差(RMSE)。对于耐炭和天然气产品,通过降低的网络(分别为5.1wt%AR和5.6wt%AR),始终如一地实现了最佳结果,而对于液体产品,可以通过完整的网络给出最佳结果( RMSE 6.9 WT%AR)指示正确选择输入功能的大量值。通常,Char模型是最好的表现。与原版相比,还规定并获得了作为额外输入的液体和气体产品的液体和天然气产品的额外型号,并获得了更好的性能(分别为5.5wt%AR和4.9wt%AR)。还包括基于单项研究的模型,以便展示工具的能力以及在试图构建这种可广泛的模型时出现的挑战。总体而言,人工神经网络被证明是建造设置 - 非特异性生物量热解产品产量模型的有趣工具。目前沿着系统更准确的系统建模的障碍物突出显示,以及某些文献差异,其妨碍了实验条件的可靠定量比较和不同研究的结果。

著录项

  • 来源
    《Journal of Analytical & Applied Pyrolysis》 |2021年第8期|105180.1-105180.18|共18页
  • 作者单位

    Delft Univ Technol Proc & Energy Dept Fac Mech Maritime & Mat Engn Leeghwaterstr 39 NL-2628 CB Delft Netherlands;

    Delft Univ Technol Proc & Energy Dept Fac Mech Maritime & Mat Engn Leeghwaterstr 39 NL-2628 CB Delft Netherlands;

    Delft Univ Technol Proc & Energy Dept Fac Mech Maritime & Mat Engn Leeghwaterstr 39 NL-2628 CB Delft Netherlands|Engn & Technol Inst Groningen Fac Sci & Engn Chem Technol Nijenborgh 4 NL-9747 AG Groningen Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pyrolysis; Artificial neural networks; Biomass modelling;

    机译:热解;人工神经网络;生物量造型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号