首页> 外文期刊>Journal of the American Chemical Society >Enzymatic Ring-Opening Mechanism of Verdoheme by the Heme Oxygenase: A Combined X-ray Crystallography and QM/MM Study
【24h】

Enzymatic Ring-Opening Mechanism of Verdoheme by the Heme Oxygenase: A Combined X-ray Crystallography and QM/MM Study

机译:血红素加氧酶酶促Verdoheme的酶开环机理:结合X射线晶体学和QM / MM研究

获取原文
获取原文并翻译 | 示例
       

摘要

The least understood mechanism during heme degradation by the enzyme heme oxygenase (HO) is the third step of ring opening of verdoheme to biliverdin, a process which maintains iron homeostasis. In response to this mechanistic uncertainty, we launched a combined study of X-ray crystallography and theoretical QM/MM calculations, designed to elucidate the mechanism. The air-sensitive ferrous verdoheme complex of HmuO, a heme oxygenase from Corynebacterium diphtheriae, was crystallized under anaerobic conditions. Spectral analysis of the azide-bound verdoheme−HmuO complex crystals assures that the verdoheme group remains intact during the crystallization and X-ray diffraction measurement. The structure offers the first solid evidence for the presence of a water cluster in the distal pocket of this catalytically critical intermediate. The subsequent QM/MM calculations based on this crystal structure explore the reaction mechanisms starting from the FeOOH−verdoheme and FeHOOH−verdoheme complexes, which mimic, respectively, the O2- and H2O2-supported degradations. In both mechanisms, the rate-determining step is the initial O−O bond breaking step, which is either homolytic (for FeHOOH−verdoheme) or coupled to electron and proton transfers (in FeOOH−verdoheme). Additionally, the calculations indicate that the FeHOOH−verdoheme complex is more reactive than the FeOOH−verdoheme complex in accord with experimental findings. QM energies with embedded MM charges are close to and yield the same conclusions as full QM/MM energies. Finally, the calculations highlight the dominant influence of the distal water cluster which acts as a biocatalyst for the conversion of verdoheme to biliverdin in the two processes, by fixing the departing OH and directing it to the requisite site of attack, and by acting as a proton shuttle and a haven for the highly reactive OH− nucleophile.
机译:血红素加氧酶(HO)降解血红素的过程中,鲜为人知的机制是维多血红素向biliverdin开环的第三步,该过程可维持铁体内平衡。针对这种机械不确定性,我们开展了X射线晶体学和理论QM / MM计算的组合研究,旨在阐明其机理。 HmuO对空气敏感的亚铁Verdoheme络合物(一种来自白喉棒状杆菌的血红素加氧酶)在厌氧条件下结晶。叠氮化物结合的Verdoheme-HmuO复合晶体的光谱分析确保了Verdoheme基团在结晶和X射线衍射测量过程中保持完整。该结构提供了第一个坚实的证据,证明该催化关键中间体的远端囊中存在水簇。随后基于该晶体结构的QM / MM计算探索了从FeOOH-verdoheme和FeHOOH-verdoheme络合物开始的反应机理,它们分别模拟O 2 -和H 2 < / sub> O 2 支持的降级。在这两种机制中,决定速率的步骤都是初始的O-O键断裂步骤,该步骤可以是均溶的(对于FeHOOH-verdoheme),或者与电子和质子转移(在FeOOH-verdoheme中)耦合。此外,计算表明,根据实验结果,FeHOOH-verdoheme络合物比FeOOH-verdoheme络合物更具反应性。带有嵌入MM电荷的QM能量接近于完全QM / MM能量,并且得出与完全QM / MM能量相同的结论。最后,计算结果突出了远端水团簇的主要影响力,该团簇通过固定离去的OH并将其引导至必要的进攻位置,并充当两个过程,在两个过程中充当了将Verdoheme转化为Biliverdin的生物催化剂。质子穿梭和高反应性OH -亲核试剂的避风港。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第37期|p.12960-12970|共11页
  • 作者

    Wenzhen Lai;

  • 作者单位

    Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, S;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号