首页> 外文期刊>International Journal of Applied Ceramic Technology / Functional Ceramics >Reproducibility and Ferroelectric Fatigue of Lead Zirconate Titanate Thin Films Deposited Directly on Copper Via a Composite Gel Architecture
【24h】

Reproducibility and Ferroelectric Fatigue of Lead Zirconate Titanate Thin Films Deposited Directly on Copper Via a Composite Gel Architecture

机译:通过复合凝胶结构直接沉积在铜上的锆钛酸铅钛薄膜的重现性和铁电疲劳

获取原文
获取原文并翻译 | 示例
       

摘要

Integrating ferroelectric lead zirconate titanate (PZT) thin films directly on copper metal foils has high commercialization potential. PZT films on copper foils eliminate costly noble metal or conductive oxide electrodes and make available a flexible substrate technology that can be readily laminated into printed wiring boards. Unlike noble metals, copper substrates are potentially reactive, and therefore susceptible to processing fluctuations that offer negligible consequences to noble metal-based systems. Herein, the reliability of the composite gel architecture route for synthesizing PZT thin films directly on copper foils is explored. Reproducibility in film properties and avoidance of solution aging effects are demonstrated. Fatigue cycling is used to evaluate electrical durability. Ferroelectric switching with polarization saturation is demonstrated after 1 billion cycles. Loss in spontaneous polarization is recovered with postfatigue annealing demonstrating the high material integrity necessary for commercial device performance, and distinct similarity to the behavior over time with noble metal electrode capacitors.
机译:直接在铜金属箔上集成铁电锆酸钛酸铅(PZT)薄膜具有很高的商业化潜力。铜箔上的PZT薄膜消除了昂贵的贵金属或导电氧化物电极,并提供了可轻松层压到印刷线路板上的柔性基板技术。与贵金属不同,铜基板可能具有反应性,因此容易受到工艺波动的影响,而这种波动对基于贵金属的系统的影响可忽略不计。本文探讨了直接在铜箔上合成PZT薄膜的复合凝胶体系路线的可靠性。证明了膜性能的可重复性和避免溶液老化的影响。疲劳循环用于评估电气耐久性。在十亿次循环后,证明了具有极化饱和的铁电开关。通过疲劳后退火可以恢复自发极化的损失,这证明了商业设备性能所必需的高材料完整性,并且与贵金属电极电容器随时间的行为具有明显相似性。

著录项

  • 来源
  • 作者

    Mark D.Losego; Jon-Paul Maria;

  • 作者单位

    Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606;

    rnDepartment of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:40:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号